
1

Sitaram Vemulapalli 

Bingjie Miao

Johan Larson

Ajit Yagaty 

John Liang

Deepkaran Salooja

Isha Kandaswamy

Keshav Murthy

 A GUIDE TO N1QL  
IN COUCHBASE 5.5

SPECIAL 
EDITION



2



3

FOREWORD 

N1QL was first released in New York in 2015. Now, it’s great to release Couchbase 5.5 and this 

N1QL 5.5 feature booklet with it. Couchbase 5.5 includes important N1QL language, security and 

performance features.  

ANSI join improvements not only makes the N1QL joins closer to SQL standard joins, but also 

extends the joins expressions to include arrays. Index partitioning improves index capacity, 

usability, and performance. Couchbase 5.5 improves grouping and aggregate performance 

by orders of magnitude. N1QL auditing and x.509 support make it easier for compliance and 

security with N1QL. Query, indexing and the performance teams have worked closely to measure 

the performance of all these operations. 

Hope you’ll find the improvements and the articles about these improvements useful to progress 

in your enterprise journey.

Keshav Murthy 

For the Couchbase N1QL and Indexing Team

April, 20th, 2018 

Mountain View, California



4



5

AUTHORS 

Sitaram Vemulapalli
Sitaram Vemulapalli is a Principal Software Engineer at Couchbase. Prior to Couchbase, he

served as an architect for IBM Informix SQL and has more than 20 years experience in database 

design and development. Sitaram holds a master’s degree in system science and automation 

from the Indian Institute of Science, India.

John Liang
John is a senior architect at Couchbase leading the Couchbase XDCR (replication) and indexing.  

Previously, he has worked in Oracle, Siebel, Asera. John worked on the full spectrum of the 

application stack, from database kernel, middleware, enterprise data integration, cloud, and 

application framework. John holds master’s degree in computer engineering from University of 

Wisconsin, Madison.  

Deepkaran Salooja
Deepkaran is a Principal Software Engineer at Couchbase working as a core developer for Global 

Secondary Indexes. Prior to joining Couchbase, he worked with column oriented database 

startup, Vertica. He holds bachelor’s degree in computer science from GND University, India.

Bingjie Miao
Bingjie is a senior software engineer at Couchbase working on N1QL query processing. Bingjie 

has worked in IBM and Informix (IDS and XPS) database R&D, developing advanced query 

processing features for OLTP, OLAP engines including star join optimizations, windowed 

aggregates, optimizer features. He has a PhD from University of Wisconsin, Madison and several 

US patents.

Johan Larson
Johan Larson has been a software developer since 2001. He studied databases in graduate

school, worked with them from the user side for a couple of now-forgotten startups in the 

Bay area, and has built server-side systems for companies such as Open Text, Informatica, and 

Google. He has been a Senior Software Engineer in the Couchbase N1QL team since 2015.  



6



7

Isha Kandaswamy
Isha Kandaswamy is a Senior Software Engineer in the query group at Couchbase. Prior to 

Couchbase, she worked in the query optimization group at Teradata. Isha earned her master’s 

degree in computer science and robotics from Johns Hopkins University.

Ajit Yagaty 
Ajit Yagaty is a senior software engineer working cluster management and security for 

Couchbase NoSQL database. He has diverse technology background and experience in 

designing/developing software components across the stack, right from distributed systems 

development to kernel module development to firmware development. He has bachelor’s degree 

in Computer Science from Visvesvaraya Technological University, India.

Keshav Murthy
Keshav Murthy is a Senior Director at Couchbase of N1QL R&D. Previously, he was a Senior 

Director at MapR, Senior Architect for IBM, with more than 20 years experience in database 

design & development. He lead the SQL and NoSQL R&D team at IBM Informix. He has received 

two President’s Club awards at Couchbase, two Outstanding Technical Achievement Awards at 

IBM. Keshav has a bachelors degree in Computer Science and Engineering from the University of 

Mysore, India, holds eight US patents and invented databases for systems of engagement.



8



9

TABLE OF CONTENTS

COUCHBASE 5.5: OVERVIEW OF QUERY  
AND INDEXING FEATURES	  

Keshav Murthy................................................................................................................................................................ 9

ANSI JOINS IN N1QL	

Bingjie Miao.................................................................................................................................................................... 17 

UNDERSTANDING INDEX GROUPING AND AGGREGATION  
IN COUCHBASE N1QL QUERY	

Sitaram Vemulapalli...................................................................................................................................................49

INDEX PARTITIONING	

John Liang • Keshav Murthy...................................................................................................................................79

AUDITING COUCHBASE N1QL STATEMENTS	

Johan Larson.................................................................................................................................................................91

N1QL SUPPORT FOR X.509

Isha Kandaswamy • Ajit Yagaty........................................................................................................................... 105



10



Overview of  
Couchbase Query and  

Indexing Features  



12



13

COUCHBASE 5.5: OVERVIEW OF QUERY  
AND INDEXING FEATURES.
Author: Keshav Murthy, Couchbase R&D

Language Features

•	 ANSI Joins support

•	 INNER JOIN

•	 LEFT OUTER

•	 RIGHT OUTER

•	 NEST and UNNEST

•	 JOIN on arrays

Security & Infrastructure Features

•	 N1QL Auditing

•	 X.509 Support

•	 IPV6 Support

•	 Backfill

•	 ALTER INDEX

Performance Features

•	 GROUP BY performance

•	 Aggregation performance

•	 Index Partitioning

•	 Query pipeline performance

•	 Hash join 

Query Workbench Features

•	 Visual Explain improvements

•	 Parameters for Query

•	 Easy copy results to Excel

Language Features:

JOIN is one of the foundational operations in SQL. Hence, N1QL has implemented INNER JOIN 

and LEFT OUTER JOIN from the first release. In addition, N1QL has added NEST and UNNEST 

operations to work with arrays, a commonly used data structure in JSON. So far, the join 

expression was limited to equality child-to-parent or parent-to-child documents.   

In Couchbase 5.5, you can join on any complex expression just like SQL joins. We’ve also added 

limited support for RIGHT OUTER joins.

So far, the join execution used a method called Block Nested Loop Join. This algorithm 

works fine when the number of documents in the outer table is limited. When the number of 

documents is high (e.g. reporting queries), the query latency can be high.

In Couchbase 5.5, we introduce hash join to improve the performance of join queries with a 

large number of documents. The article on “ANSI JOINs in N1QL” describes the details on join 

language and performance improvements.

https://en.wikipedia.org/wiki/Block_nested_loop
https://en.wikipedia.org/wiki/Hash_join


14

Performance Features:

One of the common ways to improve query performance is to create an index that covers the 

query. For queries which require grouping and aggregation, even when the query is covered by 

an index, we fetch all of the qualified document keys, index keys to the query service, then group 

and aggregate on that data. This process copies the data multiple times, from the indexer, over 

the network to the indexer client, to the query service. If the scan result is large, we end up using 

backfill to write the results into the file and read it later on.  

After selecting the index for the query, Couchbase 5.5 automatically evaluates the possibility of 

the indexer evaluating the grouping and aggregation. If it’s feasible, the scan request will include 

additional requests to group and aggregate within the indexer. Couchbase 5.5’s index service 

can now do runtime grouping and aggregation. That means, the indexer can scan, group and 

aggregate the data within the indexer, eliminating multiple data copy operations and improving 

both the latency and throughput of these queries.

The article, “Understanding Index Grouping And Aggregation in Couchbase N1QL Query” 

describes this process in details.

In Couchbase, data is always partitioned using the consistent hash value of the document key 

into buckets which are stored in multiple nodes. For indexer, however, you had to partition 

them manually using the WHERE clause on the CREATE INDEX. This manual partitioning is 

cumbersome to manage and required queries to be written carefully to match one of the 

predicates in the WHERE clause.

In Couchbase 5.5, you can simply partition the index using the hash strategy. The hash 

partitioned index will increase the index capacity by creating multiple indexes on a single large 

collection of documents easily. For query processing, for simple queries with equality predicates 

on hash key, you get uniform distribution of the workload on these multiple indexes. For 

complex queries including the grouping & aggregation we discussed above, the scans, partial 

aggregations are done in parallel, improving the query latency. The article “index partitioning” 

will describe this feature in detail.

Security and Infrastructure Features:

N1QL Auditing helps customers implement regulatory compliance like HIPPA, GDPR by auditing 

every N1QL statement executed on the system. You can configure the auditing to auditing 

specific or all users and/or roles, specific or all statements. The article “N1QL Auditing” will 

explain the feature, its use case in detail.

Couchbase 5.5 supports using certificate authority signed certificates for public key certificates 

used in the TLS (Transport Layer Security). The article “N1QL Support for X.509” describes the 

feature in N1QL.

https://blog.couchbase.com/create-right-index-get-right-performance/
https://blog.couchbase.com/create-right-index-get-right-performance/
https://en.wikipedia.org/wiki/Consistent_hashing


15

ALTER INDEX helps you to move the indexes from one node to the other, change the number 

of replica for the index, generally improving the index manageability. See ALTER INDEX 

documentation for details.

Index scans are efficient and fast. When an index scan request returns a large number of 

qualified keys, query service may not be able to consume at the same speed. To avoid any 

backlog of these index scan results in the indexer, the query service (actually the index client 

within the query service) fetches rest of the results and writes into a temporary file. These 

backfill files will be purged once the query completes. The location of these files was always /

tmp on Linux and TEMPDIR on Windows. In Couchbase 5.5, you can change the location of the 

directory where the backfill files are created and set a quote for maximum storage that can be 

used. See Query Temp Disk Path documentation for details.

Query Workbench Features

Couchbase 5.0 added visual explain to easily understand the query plan and debug performance 

issues by looking at the profile statistics on each of the query operator. The picture below should 

say it all!

https://developer.couchbase.com/documentation/server/5.5/n1ql/n1ql-language-reference/alterindex.html#untitled1
https://developer.couchbase.com/documentation/server/5.5/n1ql/n1ql-language-reference/alterindex.html#untitled1
https://developer.couchbase.com/documentation/server/5.5/settings/cluster-settings.html


16

In addition, you can now run prepared statement with different parameters by setting different 

query specific parameters, timeouts, profiling parameters for each run.

Last, but not the least, we’ve made it easier to copy the results from query workbench to Excel 

or any other tool expecting tabular output. The picture below shows tabular output and then 

simply click on the copy icon next to Query results.



17

Simply paste into Excel or Google Sheets.  It’ll copy like magic :-)

References

1.	 What’s new in Couchbase 5.5?  

https://developer.couchbase.com/documentation/server/5.5/introduction/whats-new.html

2.	 Couchbase blogs: https://blog.couchbase.com/

3.	 Couchbase Documentation:  

https://developer.couchbase.com/documentation/server/5.5/introduction/intro.html

https://developer.couchbase.com/documentation/server/5.5/introduction/whats-new.html 
https://blog.couchbase.com/ 
https://developer.couchbase.com/documentation/server/5.5/introduction/intro.html


18



ANSI Joins in N1QL



20



21

ANSI JOINS IN N1QL
Author: Bingjie Miao, Senior Software Engineer, Couchbase R&D

Overview:

ANSI JOIN support is added in N1QL to Couchbase version 5.5. Previous versions of Couchbase 

only support lookup join and index join. Lookup join and index join works great when the 

document key from one side of the join can be produced by the other side of the join, i.e.,  

joining on a parent-child or child-parent relationship through document key. Where they 

fall short is when the join is on arbitrary fields or expressions of fields, or when multiple join 

conditions are required. ANSI JOIN is a standardized join syntax widely used in relational 

databases. ANSI JOIN is much more flexible than lookup join and index join, allowing join to 

be done on arbitrary expressions on any fields in a document, this makes join operations much 

simpler and more powerful.

ANSI JOIN syntax:

lhs-expression [ join-type ] JOIN rhs-keyspace ON [ join-condition ]

The left-hand side of the join, lhs-expression can be a keyspace, a N1QL expression, a subquery, 

or a previous join. The right-hand side of the join, rhs-keyspace, must be a keyspace. The ON-

clause specifies the join condition, which can be any arbitrary expression, although it should 

contain predicates that allows an index scan on the right-hand side keyspace. Join-type can 

be INNER, LEFT OUTER, RIGHT OUTER. The INNER and OUTER keywords are optional, thus 

JOIN is the same as INNER JOIN, and LEFT JOIN is the same as LEFT OUTER JOIN. In relational 

databases join-type can also be FULL OUTER or CROSS, although FULL OUTER JOIN and 

CROSS JOIN are not supported currently in N1QL.

Details of ANSI JOIN support

We’ll use examples to show you new ways you can run queries using ANSI JOIN syntax, and 

how to transform your existing join queries in N1QL from lookup join or index join syntax into 

new ANSI JOIN syntax. It should be noted that lookup join and index join will continue to be 

supported in N1QL for backward compatibility, however you cannot mix lookup join or index  

join with the new ANSI JOIN syntax in the same query block, thus customers are encouraged  

to migrate to the new ANSI JOIN syntax.



22

To follow along, install travel-sample sample bucket.

Example 1: ANSI JOIN with arbitrary join condition

The join condition (ON-clause) for ANSI JOIN can be any expression, involving any fields of the 

documents being joined. For example:

Required index:

CREATE INDEX route_airports ON `travel-sample`(sourceairport, destinationairport)  
WHERE type = “route”;

Optional index:

CREATE INDEX airport_city_country ON `travel-sample`(city, country) WHERE type = 
“airport”;

Query:

SELECT DISTINCT route.destinationairport
FROM `travel-sample` airport JOIN `travel-sample` route
 	 ON airport.faa = route.sourceairport
        AND route.type = "route"
WHERE airport.type = "airport"
  AND airport.city = "San Francisco"
 AND airport.country = "United States";

In this query we are joining a field (“faa”) from the airport document with a field 

(“sourceairport”) from the route document (see the ON clause of the join). Such join is  

not possible with lookup join or index join in N1QL, since both requires joining on document  

key only.

ANSI JOIN requires an appropriate index on the right-hand side keyspace (“Required index” 

above). You can also create other indexes (e.g. “Optional index” above) to speed up your query. 

Without the optional index a primary scan will be used and query still works, however without 

the required index the query will not work and will return an error.



23

 Looking at the explain:

"plan": {
  "#operator": "Sequence",
  "~children": [
    {
      "#operator": "IndexScan3",
      "as": "airport",
      "index": "airport_city_country",
      "index_id": "8e782fd1b124eec3",
      "index_projection": {
        "primary_key": true
      },
      "keyspace": "travel-sample",
      "namespace": "default",
      "spans": [
        {
          "exact": true,
          "range": [
            {
              "high": "\"San Francisco\"",
              "inclusion": 3,
              "low": "\"San Francisco\""
            },
            {
              "high": "\"United States\"",
              "inclusion": 3,
              "low": "\"United States\""
            }
          ]
        }
      ],
      "using": "gsi"
    },
    {
      "#operator": "Fetch",
      "as": "airport",
      "keyspace": "travel-sample",
      "namespace": "default"
    },
    {
      "#operator": "Parallel",
      "~child": {
        "#operator": "Sequence",
        "~children": [
          {
            "#operator": "NestedLoopJoin",
            "alias": "route",



24

            "on_clause": "(((`airport`.`faa`) = cover ((`route`.`sourceairport`))) and 
(cover ((`route`.`type`)) = \"route\"))",
            "~child": {
              "#operator": "Sequence",
              "~children": [
                {
                  "#operator": "IndexScan3",
                  "as": "route",
                  "covers": [
                    "cover ((`route`.`sourceairport`))",
                    "cover ((`route`.`destinationairport`))",
                    "cover ((meta(`route`).`id`))"
                  ],
                  "filter_covers": {
                    "cover ((`route`.`type`))": "route"
                  },
                  "index": "route_airports",
                  "index_id": "f1f4b9fbe85e45fd",
                  "keyspace": "travel-sample",
                  "namespace": "default",
                  "nested_loop": true,
                  "spans": [
                    {
                      "exact": true,
                      "range": [
                        {
                          "high": "(`airport`.`faa`)",
                          "inclusion": 3,
                          "low": "(`airport`.`faa`)"
                        }
                      ]
                    }
                  ],
                  "using": "gsi"
                }
              ]
            }
          },
          {
            "#operator": "Filter",
            "condition": "((((`airport`.`type`) = \"airport\") and ((`airport`.`city`) 
= \"San Francisco\")) and ((`airport`.`country`) = \"United States\"))"
          },
          {
            "#operator": "InitialProject",
            "distinct": true,
            "result_terms": [
              {



25

                "expr": "cover ((`route`.`destinationairport`))"
              }
            ]
          },
          {
            "#operator": "Distinct"
          },
          {
            "#operator": "FinalProject"
          }
        ]
      }
    },
    {
      "#operator": "Distinct"
    }
  ]
}

You will see a NestedLoopJoin operator is used to perform the join, and underneath that an 

IndexScan3 operator is used to access the right-hand side keyspace, “route”. The spans for the 

index scan looks like:

"spans": [
  {
    "exact": true,
    "range": [
      {
        "high": "(`airport`.`faa`)",
        "inclusion": 3,
        "low": "(`airport`.`faa`)"
      }
    ]
  }
]



26

The index scan for the right-hand side keyspace (“route”) is using a field (“faa”) from the left-

hand side keyspace (“airport”) as search key. For each document from outer side keyspace 

“airport” the NestedLoopJoin operator performs an index scan on the inner side keyspace 

“route” to find matching documents, and produces join results. The join is performed in a nested-

loop fashion, where the outer loop produces document from outer side keyspace, and a nested 

inner loop searches for matching inner side document for the current outer side document.

The explain information can also be view graphically on Query Workbench, by clicking the 

Explain button followed by the Plan button:



27

Visual Explain for ANSI JOIN

In this example the index scan on the right-hand side keyspace is a covered index scan. In case 

the index scan is not covered, a fetch operator will be following the index scan operator to fetch 

the document.

It should be noted that nested-loop join requires an appropriate secondary index on the 

right-hand side keyspace of ANSI JOIN. Primary index is not considered for this purpose. If an 

appropriate secondary cannot be found, an error will be returned for the query.

In addition, you might have noticed that the filter route.type = “route” appears in the ON-clause 

as well. The ON-clause is different than the WHERE clause in that the ON-clause is evaluated as 

part of the join, while the WHERE clause is evaluated after all joins are done. This distinction is 

important, especially for outer joins. Therefore it is recommended that you include filters on the 

right-hand side keyspace for a join in the ON-clause as well, in addition to any join filters.

Example 2: ANSI JOIN with multiple join conditions

While lookup join and index join only joins on a single join condition (equality of document key), 

the ON-clause of ANSI JOIN can contain multiple join conditions.

Required index:

CREATE INDEX landmark_city_country ON `travel-sample`(city, country) WHERE type = 
“landmark”; Optional index:
CREATE INDEX hotel_title ON `travel-sample`(title) WHERE type = “hotel”;

Query:

SELECT hotel.name hotel_name, landmark.name landmark_name, landmark.activity
FROM `travel-sample` hotel JOIN `travel-sample` landmark
    ON hotel.city = landmark.city AND hotel.country = landmark.country AND landmark.
type = “landmark”
WHERE hotel.type = “hotel” AND hotel.title like “Yosemite%” AND array_length(hotel.
public_likes) > 5;

Looking at the explain, the index spans for the index (“landmark_city_country”) of the right-

hand side keyspace (“landmark”) is:

"spans": [
  {
    "exact": true,
    "range": [
      {



28

        "high": "(`hotel`.`city`)",
        "inclusion": 3,
        "low": "(`hotel`.`city`)"
      },
      {
        "high": "(`hotel`.`country`)",
        "inclusion": 3,
        "low": "(`hotel`.`country`)"
      }
    ]
  }
]
 

Thus multiple join predicates can potentially generate multiple index search keys for the index 

scan of the inner side of a nested-loop join.

Example 3: ANSI JOIN with complex join expressions

The join condition in the ON-clause can be complex join expression. For example, the “airlineid” 

field in “route” document corresponds to the document key for “airline” document, but it can 

also be constructed by concatenating “airline_” with the “id” field of the “airline” document.

Required index:

1  CREATE INDEX route_airlineid ON `travel-sample`(airlineid) WHERE type = “route”;

Optional index:

CREATE INDEX airline_name ON `travel-sample`(name) WHERE type = “airline”;

Query:

SELECT count(*)
FROM `travel-sample` airline JOIN `travel-sample` route
 	 ON route.airlineid = “airline_” || tostring(airline.id) AND route.type = “route”
   WHERE airline.type = “airline” AND airline.name = “United Airlines”;

The explain contains the following index spans for the right-hand side keyspace(“route”):

"spans": [
  {
    "exact": true,
    "range": [
      {
        "high": "(\"airline_\" || to_string((`airline`.`id`)))",



29

        "inclusion": 3,
        "low": "(\"airline_\" || to_string((`airline`.`id`)))"
      }
    ]
  }
]

The expression will be evaluated at runtime to generate the search keys for the index scan on 

the inner side of nested-loop join.

Example 4: ANSI JOIN with IN clause

The join condition does not need to be an equality predicate. An IN-clause can be used as join 

condition.

Required index:

CREATE INDEX airport_faa_name ON `travel-sample`(faa, airportname) WHERE type = 
“airport”;

Optional index:

CREATE INDEX route_airline_distance ON `travel-sample`(airline, distance) WHERE type = 
“route”;

Query

SELECT DISTINCT airport.airportname

FROM `travel-sample` route JOIN `travel-sample` airport

    ON airport.faa IN [ route.sourceairport, route.destinationairport ] AND airport.
type = “airport”

WHERE route.type = “route” AND route.airline = “F9” AND route.distance > 3000;

The explain contains the following index spans for the right-hand side keyspace(“airport”):

"spans": [
  {
    "range": [
      {
        "high": "(`route`.`sourceairport`)",
        "inclusion": 3,
        "low": "(`route`.`sourceairport`)"



30

      }
    ]
  },
  {
    "range": [
      {
        "high": "(`route`.`destinationairport`)",
        "inclusion": 3,
        "low": "(`route`.`destinationairport`)"
      }
    ]
  }
]

Example 5: ANSI JOIN with OR clause

Similar to IN-clause, the join condition for an ANSI JOIN can also contain an OR-clause. Different 

arms of the OR-clause can potentially reference different fields of the right-hand side keyspace, 

as long as appropriate indexes exist.

Required index (route_airports index same as example 1):

CREATE INDEX route_airports ON `travel-sample`(sourceairport, destinationairport) WHERE 
type = “route”;
CREATE INDEX route_airports2 ON `travel-sample`(destinationairport, sourceairport) 
WHERE type = “route”;

Optional index (same as example 1):

1      CREATE INDEX airport_city_country ON `travel-sample`(city, country) WHERE type = 
“airport”;

Query:

SELECT count(*)
FROM `travel-sample` airport JOIN `travel-sample` route
    ON (route.sourceairport = airport.faa OR route.destinationairport = airport.faa) 
AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “Denver” AND airport.country = 
“United States”;



31

The explain shows an UnionScan being used under NestedLoopJoin, to handle the OR-clause:

"#operator": "UnionScan",
"scans": [
  {
    "#operator": "IndexScan3",
    "as": "route",
    "index": "route_airports",
    "index_id": "f1f4b9fbe85e45fd",
    "index_projection": {
      "primary_key": true
    },
    "keyspace": "travel-sample",
    "namespace": "default",
    "nested_loop": true,
    "spans": [
      {
        "exact": true,
        "range": [
          {
            "high": "(`airport`.`faa`)",
            "inclusion": 3,
            "low": "(`airport`.`faa`)"
          }
        ]
      }
    ],
    "using": "gsi"
  },
  {
    "#operator": "IndexScan3",
    "as": "route",
    "index": "route_airports2",
    "index_id": "cdc9dca18c973bd3",
    "index_projection": {
      "primary_key": true
    },
    "keyspace": "travel-sample",
    "namespace": "default",
    "nested_loop": true,
    "spans": [
      {
        "exact": true,
        "range": [
          {
            "high": "(`airport`.`faa`)",
            "inclusion": 3,
            "low": "(`airport`.`faa`)"



32

          }
        ]
      }
    ],
    "using": "gsi"
  }
]

Example 6: ANSI JOIN with hints

For lookup join and index join, hints can only be specified on the keyspace on the left-hand side 

of the join. For ANSI JOIN, hints can be specified on the right-hand side keyspace as well. Using 

the same query as example 1 (with addition of USE INDEX hint):

SELECT DISTINCT route.destinationairport
FROM `travel-sample` airport JOIN `travel-sample` route USE INDEX(route_airports)
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “San Francisco” AND airport.country = 
“United States”;

The USE INDEX hint limits the number of indexes the planner needs to consider for performing 

the join.

Hints can also be specified on the left-hand side keyspace of ANSI JOIN.

SELECT DISTINCT route.destinationairport
FROM `travel-sample` airport USE INDEX(airport_city_country)
   JOIN `travel-sample` route USE INDEX(route_airports)
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “San Francisco” AND airport.country = 
“United States”;

Example 7: ANSI LEFT OUTER JOIN

So far we’ve been looking at inner joins. You can also perform LEFT OUTER JOIN by just 

including LEFT or LEFT OUTER keywords in front of JOIN keyword in join specification.

Required index (same as example 1):

CREATE INDEX route_airports ON `travel-sample`(sourceairport, destinationairport)  
WHERE type = “route”;



33

Optional index (same as example 1):

CREATE INDEX airport_city_country ON `travel-sample`(city, country) WHERE type = 
“airport”;

Query:

SELECT airport.airportname, route.airlineid
FROM `travel-sample` airport LEFT JOIN `travel-sample` route
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “Denver” AND airport.country =  
“United States”;

The result set for this query contains all the joined results, as well as any left-hand side 

(“airport”) document that does not join with the right-hand side (“route”) document, according 

to semantics of LEFT OUTER JOIN. Thus you’ll find results that just contain airport.airportname 

but not route.airlineid (which is missing). You can also select just the left-hand side (“airport”) 

document that does not join with right-hand side (“route”) document by adding a IS MISSING 

predicate on the right-hand side keyspace (“route”):

SELECT airport.airportname, route.airlineid
FROM `travel-sample` airport LEFT JOIN `travel-sample` route
 	 ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “Denver” AND airport.country =  
“United States”
  AND route.airlineid IS MISSING;

Example 8: ANSI RIGHT OUTER JOIN

ANSI RIGHT OUTER JOIN is similar to ANSI LEFT OUTER JOIN except we preserve the right-

hand side document if no join occurs. We can modify the query in example 7 by switching the 

left-hand side and right-hand side keyspaces, and replacing LEFT keyword with RIGHT keyword:

SELECT airport.airportname, route.airlineid
FROM `travel-sample` route RIGHT JOIN `travel-sample` airport
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “Denver” AND airport.country =  
“United States”;

Note that although we switched airport and route in join specification, the filter on route (now 

the left-hand side keyspace) still appears in the ON-clause of the join, since route is still on the 

subservient side in this outer join.



34

RIGHT OUTER JOIN is internally converted to LEFT OUTER JOIN.

If a query contains multiple joins, a RIGHT OUTER JOIN can only be the first join specified.  

Since N1QL only support linear joins, i.e., the right-hand side of each join must be a single 

keyspace, if a RIGHT OUTER JOIN is not the first join specified, then after converting to LEFT 

OUTER JOIN, the right-hand side of the join now contains multiple keyspaces, which is not 

supported. If you specify RIGHT OUTER JOIN in any position other than the first join, a syntax 

error will be returned.

Example 9: ANSI JOIN using Hash Join

N1QL supports two join methods for ANSI JOIN. The default join method for an ANSI JOIN is 

nested-loop join. The alternative is hash join. Hash join uses a hash table to match documents 

from both sides of the join. Hash join has a build side and a probe side, where each document 

from the build side is inserted into a hash table based on values of equi-join expression from the 

build side; subsequently each document from the probe side looks up from the hash table based 

on values of equi-join expression from the probe side. If a match is found then the join operation 

is performed.

Compared with nested-loop join, hash join can be more efficient when the join is large, e.g., 

when there are tens of thousand or more documents from the left-hand side of the join (after 

applying filters). If using nested-loop join, then for each document from the left-hand side an 

index scan needs to be performed on the right-hand side index. As the number of documents 

from the left-hand side increases, nested-loop join becomes less efficient.

For hash join, the smaller side of the join should be used for building the hash table, and the 

larger side of the join should be used for probing the hash table. It should be noted that hash 

join does require more memory than nested-loop join, since an in-memory hash table is required. 

The amount of memory required is proportional to the number of documents from the build 

side, as well as average size of each document.

Hash join is supported in enterprise edition only. To use hash join, a USE HASH hint must be 

specified on the right-hand side keyspace of ANSI JOIN. Using the same query as example 1:

SELECT DISTINCT route.destinationairport
FROM `travel-sample` airport JOIN `travel-sample` route USE HASH(build)
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “San Jose” AND airport.country =  
“United States”;

The USE HASH(build) hint directs the N1QL planner to perform hash join for the ANSI JOIN 

specified, and the right-hand side keyspace (“route”) is used on the build side of the hash join. 

Looking at the explain, there is a HashJoin operator:



35

{
  "#operator": "HashJoin",
  "build_aliases": [
    "route"
  ],
  "build_exprs": [
    "cover ((`route`.`sourceairport`))"
  ],
  "on_clause": "(((`airport`.`faa`) = cover ((`route`.`sourceairport`))) and (cover 
((`route`.`type`)) = \"route\"))",
  "probe_exprs": [
    "(`airport`.`faa`)"
  ],
  "~child": {
    "#operator": "Sequence",
    "~children": [
      {
        "#operator": "IndexScan3",
        "as": "route",
        "covers": [
          "cover ((`route`.`sourceairport`))",
          "cover ((`route`.`destinationairport`))",
          "cover ((meta(`route`).`id`))"
        ],
        "filter_covers": {
          "cover ((`route`.`type`))": "route"
        },
        "index": "route_airports",
        "index_id": "f1f4b9fbe85e45fd",
        "keyspace": "travel-sample",
        "namespace": "default",
        "spans": [
          {
            "range": [
              {
                "inclusion": 0,
                "low": "null"
              }
            ]
          }
        ],
        "using": "gsi"
      }
    ]
  }
}



36

The child operator (“~child”) for a HashJoin operator is always the build side of the hash join.  

For this query, it’s an index scan on the right-hand side keyspace “route”.

Note that for accessing the “route” document we can no longer use information from the left-

hand side keyspace (“airport”) for index search key (look at the “spans” information in the 

explain section above). Unlike nested-loop join, the index scan on “route” is no longer tied to an 

individual document from the left-hand side, and thus no value from the “airport” document can 

be used as search key for the index scan on “route”.

The USE HASH(build) hint used in the query above directs the planner to use the right-hand side 

keyspace as the build side of the hash join. You can also specify USE HASH(probe) hint to direct 

the planner to use the right-hand side keyspace as the probe side of the hash join.

SELECT DISTINCT route.destinationairport
FROM `travel-sample` airport JOIN `travel-sample` route USE HASH(probe)
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “San Jose” AND airport.country =  
“United States”;

Looking at the explain, you’ll find the HashJoin operator:

{
  "#operator": "HashJoin",
  "build_aliases": [
    "airport"
  ],
  "build_exprs": [
    "(`airport`.`faa`)"
  ],
  "on_clause": "(((`airport`.`faa`) = cover ((`route`.`sourceairport`))) and (cover 
((`route`.`type`)) = \"route\"))",
  "probe_exprs": [
    "cover ((`route`.`sourceairport`))"
  ],
  "~child": {
    "#operator": "Sequence",
    "~children": [
      {
        "#operator": "IntersectScan",
        "scans": [
          {
            "#operator": "IndexScan3",
            "as": "airport",
            "index": "airport_city_country",
            "index_id": "8e782fd1b124eec3",
            "index_projection": {



37

              "primary_key": true
            },
            "keyspace": "travel-sample",
            "namespace": "default",
            "spans": [
              {
                "exact": true,
                "range": [
                  {
                    "high": "\"San Jose\"",
                    "inclusion": 3,
                    "low": "\"San Jose\""
                  },
                  {
                    "high": "\"United States\"",
                    "inclusion": 3,
                    "low": "\"United States\""
                  }
                ]
              }
            ],
            "using": "gsi"
          },
          {
            "#operator": "IndexScan3",
            "as": "airport",
            "index": "airport_faa",
            "index_id": "c302afbf811470f5",
            "index_projection": {
              "primary_key": true
            },
            "keyspace": "travel-sample",
            "namespace": "default",
            "spans": [
              {
                "exact": true,
                "range": [
                  {
                    "inclusion": 0,
                    "low": "null"
                  }
                ]
              }
            ],
            "using": "gsi"
          }
        ]
      },
      {



38

        "#operator": "Fetch",
        "as": "airport",
        "keyspace": "travel-sample",
        "namespace": "default"
      }
    ]
  }
}

The child operator (“~child”) for HashJoin is an intersect index scan on the left-hand side 

keyspace of the ANSI JOIN, “airport”, followed by a fetch operator.

The USE HASH hint can only be specified on the right-hand side keyspace in an ANSI JOIN. 

Therefore depending on whether you want the right-hand side keyspace to be the build side or 

the probe side of a hash join, a USE HASH(build) or USE HASH(probe) hint should be specified 

on the right-hand side keyspace.

Hash join is only considered when USE HASH(build) or USE HASH(probe) hint is specified. 

Hash join requires equality join predicates to work. Nested-loop join requires an appropriate 

secondary index on the right-hand side keyspace, hash join does not (a primary index scan is an 

option for hash join). However, hash join does require more memory than nested-loop join since 

an in-memory hash table is required for hash join to work. In addition, hash join is considered a 

“blocking” operation, meaning the query engine must finish building the hash table before it can 

produce the first join result, thus for queries needing only the first few results quickly (e.g. with a 

LIMIT clause) hash join may not be the best fit.

If a USE HASH hint is specified, but a hash join cannot be generated successfully (e.g., lack of 

equality join predicates), then a nested-loop join will be considered.

Example 10: ANSI JOIN with multiple hints

You can now specify multiple hints for a keyspace on the right-hand side of an ANSI JOIN. For 

example, USE HASH hint can be used together with USE INDEX hint.

SELECT DISTINCT route.destinationairport
FROM `travel-sample` airport JOIN `travel-sample` route USE HASH(probe)  
INDEX(route_airports)
    ON airport.faa = route.sourceairport AND route.type = “route”
WHERE airport.type = “airport” AND airport.city = “San Jose” AND airport.country =  
“United States”;

Note when multiple hints are used together, you only need to specify the “USE” keyword once, 

as in the example above.

USE HASH hint can also be combined with USE KEYS hint.



39

Example 11: ANSI JOIN with multiple joins

ANSI JOIN can be chained together. For example:

Required indexes (route_airports index same as example 1):

CREATE INDEX route_airports ON `travel-sample`(sourceairport, destinationairport)  
WHERE type = “route”;
CREATE INDEX airline_iata ON `travel-sample`(iata) WHERE type = “airline”;
Optional index (same as example 1):
CREATE INDEX airport_city_country ON `travel-sample`(city, country) WHERE type =  
“airport”;

Query:

SELECT DISTINCT airline.name
FROM `travel-sample` airport INNER JOIN `travel-sample` route
    ON airport.faa = route.sourceairport AND route.type = “route”
  INNER JOIN `travel-sample` airline
    ON route.airline = airline.iata AND airline.type = “airline”
WHERE airport.type = “airport” AND airport.city = “San Jose”
 AND airport.country = “United States”;

Since there is no USE HASH hint specified in the query the explain should show two 

NestedLoopJoin operators.

You can mix hash join with nested-loop join by adding USE HASH hint to any of the joins in a 

chain of ANSI JOINs.

SELECT DISTINCT airline.name
FROM `travel-sample` airport INNER JOIN `travel-sample` route
 	 ON airport.faa = route.sourceairport AND route.type = “route”
   INNER JOIN `travel-sample` airline USE HASH(build)
 	 ON route.airline = airline.iata AND airline.type = “airline”
WHERE airport.type = “airport” AND airport.city = “San Jose”
 AND airport.country = “United States”;

or

SELECT DISTINCT airline.name
FROM `travel-sample` airport INNER JOIN `travel-sample` route USE HASH(probe)
    ON airport.faa = route.sourceairport AND route.type = “route”
  INNER JOIN `travel-sample` airline
    ON route.airline = airline.iata AND airline.type = “airline”
WHERE airport.type = “airport” AND airport.city = “San Jose”
  AND airport.country = “United States”;



40

The visual explain for the last query is follows:

As mentioned before, N1QL only supports linear joins, i.e., the right-hand side of each join must 

be a keyspace.

Example 12: ANSI JOIN involving right-hand side arrays

Although ANSI JOIN comes from SQL standard, since Couchbase N1QL handles JSON documents 

and array is an important aspect of JSON, we extended ANSI JOIN support to arrays as well.

For examples in array handling please create a bucket “default” and insert the following 

documents:

INSERT INTO default (KEY,VALUE) VALUES("test11_ansijoin", {"c11": 1, "c12": 10, "a11": 
[ 1, 2, 3, 4 ], "type": "left"}),
                 VALUES("test12_ansijoin", {"c11": 2, "c12": 20, "a11": [ 3, 3, 5, 10 
], "type": "left"}),
                 VALUES("test13_ansijoin", {"c11": 3, "c12": 30, "a11": [ 3, 4, 20, 40 



41

], "type": "left"}),
                 VALUES("test14_ansijoin", {"c11": 4, "c12": 40, "a11": [ 30, 30, 30 ], 
"type": "left"});
INSERT INTO default (KEY,VALUE) VALUES("test21_ansijoin", {"c21": 1, "c22": 10, "a21": 
[ 1, 10, 20], "a22": [ 1, 2, 3, 4 ], "type": "right"}),
                 VALUES("test22_ansijoin", {"c21": 2, "c22": 20, "a21": [ 2, 3, 30], 
"a22": [ 3, 5, 10, 3 ], "type": "right"}),
                 VALUES("test23_ansijoin", {"c21": 2, "c22": 21, "a21": [ 2, 20, 30], 
"a22": [ 3, 3, 5, 10 ], "type": "right"}),
                 VALUES("test24_ansijoin", {"c21": 3, "c22": 30, "a21": [ 3, 10, 30], 
"a22": [ 3, 4, 20, 40 ], "type": "right"}),
                 VALUES("test25_ansijoin", {"c21": 3, "c22": 31, "a21": [ 3, 20, 40], 
"a22": [ 4, 3, 40, 20 ], "type": "right"}),
                 VALUES("test26_ansijoin", {"c21": 3, "c22": 32, "a21": [ 4, 14, 24], 
"a22": [ 40, 20, 4, 3 ], "type": "right"}),
                 VALUES("test27_ansijoin", {"c21": 5, "c22": 50, "a21": [ 5, 15, 25], 
"a22": [ 1, 2, 3, 4 ], "type": "right"}),
                 VALUES("test28_ansijoin", {"c21": 6, "c22": 60, "a21": [ 6, 16, 26], 
"a22": [ 3, 3, 5, 10 ], "type": "right"}),
                 VALUES("test29_ansijoin", {"c21": 7, "c22": 70, "a21": [ 7, 17, 27], 
"a22": [ 30, 30, 30 ], "type": "right"}),
                 VALUES("test30_ansijoin", {"c21": 8, "c22": 80, "a21": [ 8, 18, 28], 
"a22": [ 30, 30, 30 ], "type": "right"});

Then create the following indexes:

CREATE INDEX default_ix_left on default(c11, DISTINCT a11) WHERE type = “left”;
CREATE INDEX efault_ix_right on default(c21, DISTINCT a21) WHERE type = “right”;

When the join predicate involves an array on the right-hand side of ANSI JOIN, you need to 

create an array index on the right-hand side keyspace.

Query:

SELECT b1.c11, b2.c21, b2.c22
FROM default b1 JOIN default b2
    ON b2.c21 = b1.c11 AND ANY v IN b2.a21 SATISFIES v = b1.c12 END AND b2.type = 
“right”
WHERE b1.type = “left”;

Note that part of the join condition is an ANY clause which specifies that the left-hand side field 

b1.c12 can match any element of the right-hand side array b2.a21. For this join to work properly, 

we need an array index on b2.a21, e.g., default_ix_right index created above.

The explain plan shows a NestedLoopJoin, with child operator being a distinct scan on the array 

index default_ix_right.



42

{
  "#operator": "NestedLoopJoin",
  "alias": "b2",
  "on_clause": "((((`b2`.`c21`) = (`b1`.`c11`)) and any `v` in (`b2`.`a21`) satisfies 
(`v` = (`b1`.`c12`)) end) and ((`b2`.`type`) = \"right\"))",
  "~child": {
    "#operator": "Sequence",
    "~children": [
      {
        "#operator": "DistinctScan",
        "scan": {
          "#operator": "IndexScan3",
          "as": "b2",
          "index": "default_ix_right",
          "index_id": "ef4e7fa33f33dce",
          "index_projection": {
            "primary_key": true
          },
          "keyspace": "default",
          "namespace": "default",
          "nested_loop": true,
          "spans": [
            {
              "exact": true,
              "range": [
                {
                  "high": "(`b1`.`c11`)",
                  "inclusion": 3,
                  "low": "(`b1`.`c11`)"
                },
                {
                  "high": "(`b1`.`c12`)",
                  "inclusion": 3,
                  "low": "(`b1`.`c12`)"
                }
              ]
            }
          ],
          "using": "gsi"
        }
      },
      {
        "#operator": "Fetch",
        "as": "b2",
        "keyspace": "default",
        "namespace": "default",
        "nested_loop": true



43

      }
    ]
  }
}
 

Example 13: ANSI JOIN involving left-hand side arrays

If ANSI JOIN involves an array on the left-hand side, then there are two options for performing 

the join.

Option 1: use UNNEST

Use UNNEST clause to flatten the left-hand side array first before performing the join.

SELECT b1.c11, b2.c21, b2.c22
FROM default b1 UNNEST b1.a11 AS ba1
    JOIN default b2 ON ba1 = b2.c21 AND b2.type = “right”
WHERE b1.c11 = 2 AND b1.type = “left”;

After the UNNEST the array becomes individual fields, and the subsequent join is just like a 

“regular” ANSI JOIN with fields from both sides.

Option 2: use IN-clause

Alternatively, use IN-clause as join condition.

SELECT b1.c11, b2.c21, b2.c22
FROM default b1 JOIN default b2
    ON b2.c21 IN b1.a11 AND b2.type = “right”
WHERE b1.c11 = 2 AND b1.type = “left”;

The IN-clause is satisfied when any element of the array on the left-hand side keyspace (“b1.a11”) 

matches the right-hand side field (“b2.c21”).

Note that there is a semantics difference between the two options. When there are duplicates 

in the array, the UNNEST option does not care about duplicates and will flatten the left-

hand side documents to as many documents as number of elements in the array, thus may 

produce duplicated results; the IN-clause option will not produce duplicated results if there are 

duplicated elements in the array. In addition, when LEFT OUTER JOIN is performed, there may 

be different number of preserved documents due to the flattening of the array with the  

UNNEST option. Thus the user is advised to pick the option that reflect the semantics needed 

for the query.



44

Example 14: ANSI JOIN involving arrays on both sides

Although uncommon, it is possible to perform an ANSI JOIN when both sides of the join are 

arrays. In such cases, you can use a combination of the techniques described above. Use array 

index to handle array on the right-hand side, and use either UNNEST option or IN-clause option 

to handle array on the left-hand side.

Option 1: use UNNEST clause

SELECT b1.c11, b2.c21, b2.c22
FROM default b1 UNNEST b1.a11 AS ba1
    JOIN default b2 ON b2.c21 = b1.c11 AND ANY v IN b2.a21 SATISFIES v = ba1 END AND  
b2.type = “right”
WHERE b1.type = “left”;

Option 2: use IN-clause

SELECT b1.c11, b2.c21, b2.c22
FROM default b1 JOIN default b2
    ON b2.c21 = b1.c11 AND ANY v IN b2.a21 SATISFIES v IN b1.a11 END AND b2.type = 
“right”
WHERE b1.type = “left”;

Again the two options are not semantically identical, and may give different results. Pick the 

option that reflects the semantics desired.

Example 15: lookup join migration

N1QL will continue to support lookup join and index join for backward compatibility, however, 

you cannot mix ANSI JOIN with lookup join or index join in the same query. You can convert your 

existing queries from using lookup join and index join to the ANSI JOIN syntax. This example 

shows you how to convert a lookup join into ANSI JOIN syntax.

Create the following index to speed up the query (same as example 1):

CREATE INDEX route_airports ON `travel-sample`(sourceairport, destinationairport) WHERE 
type = “route”;

This is a query using lookup join syntax (note the ON KEYS clause):

SELECT airline.name
FROM `travel-sample` route JOIN `travel-sample` airline
    ON KEYS route.airlineid
WHERE route.type = “route” AND route.sourceairport = “SFO” AND route.destinationairport 
= “JFK”;



45

 
In lookup join the left-hand side of the join (“route”) needs to produce document keys for the 

right-hand side of the join (“airline”), this is achieved by the ON KEYS clause. The join condition 

(which is implied from the syntax) is route.airlineid = meta(airline).id, thus the same query can 

be specified using ANSI JOIN syntax:

SELECT airline.name
FROM `travel-sample` route JOIN `travel-sample` airline
    ON route.airlineid = meta(airline).id
WHERE route.type = “route” AND route.sourceairport = “SFO” AND route.destinationairport 
= “JFK”;

In this example the ON KEYS clause contain a single document key. It’s possible for the ON KEYS 

clause to contain an array of document keys, in which case the converted ON clause will be in 

the form of an IN clause instead of an equality clause. Let’s assume each route document has an 

array of document keys for airline, then the original ON KEYS clause:  

    ON KEYS route.airlineids

can be converted to:

    ON meta(airline).id IN route.airlineids

Example 16: index join migration

This example shows you how to convert an index join into ANSI JOIN syntax.

Required index (same as example 3):

CREATE INDEX route_airlineid ON `travel-sample`(airlineid) WHERE type = “route”;
Optional index (same as example 3):

CREATE INDEX airline_name ON `travel-sample`(name) WHERE type = “airline”;
Query using index join syntax (note the ON KEY … FOR … clause):

SELECT count(*)
FROM `travel-sample` airline JOIN `travel-sample` route
    ON KEY route.airlineid FOR airline
WHERE airline.type = “airline” AND route.type = “route” AND airline.name = “United 
Airlines”;

In index join the document key for left-hand side (“airline”) is used to probe an index on an 

expression (“route.airlineid” which appears in the ON KEY clause) from the right-hand side 

(“route”) that corresponds to the document key for the left-hand side (“airline” which appears in 

the FOR clause). The join condition (implied from syntax) is route.airlineid = meta(airline).id, thus 

the same query can be specified using ANSI JOIN syntax:



46

SELECT count(*)
FROM `travel-sample` airline JOIN `travel-sample` route
    ON route.airlineid = meta(airline).id
WHERE airline.type = “airline” AND route.type = “route” AND airline.name = “United 
Airlines”;

Example 17: ANSI NEST

Couchbase N1QL supports NEST operation. Previously NEST can be done using lookup nest  

or index nest, similar to lookup join and index join, respectively. With ANSI JOIN support,  

NEST operation can also be done using similar syntax, i.e., using ON clause instead of ON  

KEYS (lookup nest) or ON KEY … FOR … (index nest) clauses. This new variant is referred to  

as ANSI NEST.

Required index (route_airports index same as example 1, route_airline_distance index same as 

example 4):

CREATE INDEX route_airports ON `travel-sample`(sourceairport, destinationairport) WHERE 
type = “route”;
CREATE INDEX route_airline_distance ON `travel-sample`(airline, distance) WHERE type = 
“route”;

Optional index:

CREATE INDEX airline_country_iata_name ON `travel-sample`(country, iata, name) WHERE 
type = “airline”;

Query:

SELECT airline.name, ARRAY {“destination”: r.destinationairport} FOR r in route END as 
destinations
FROM `travel-sample` airline NEST `travel-sample` route
    ON airline.iata = route.airline AND route.type = “route” AND route.sourceairport = 
“SFO”
WHERE airline.type = “airline” AND airline.country = “United States”;

As you can see the syntax for ANSI NEST is very similar to that of ANSI JOIN. There is one 

peculiar property for nest though. By definition the nest operation creates an array of all 

matching right-hand side document for each left-hand side document, which means the 

reference to the right-hand side keyspace, “route” in this query, has different meaning depending 

on where the reference is. The ON-clause is evaluated as part of the NEST operation, and thus 

references to “route” is referencing a single document. In contrast, references in the projection 



47

clause, or the WHERE clause, are evaluated after the NEST operation, and thus references to 

“route” means the nested array, thus it should be treated as an array. Notice the projection 

clause of the query above has an ARRAY construct with a FOR clause to access each individual 

document within the array (i.e., the reference to “route” is now in an array context).

Summary
ANSI JOIN provides much more flexibility in join operations in Couchbase N1QL, compared to 

previously supported lookup join and index join, both of which requires joining on document key 

only. The examples above show various ways you can use ANSI JOIN in queries. Since ANSI JOIN 

is widely used in relational world, the support for ANSI JOIN in Couchbase N1QL should make it 

much easier to migrate applications from a relational database to Couchbase N1QL. 



48



Grouping  
and Aggregate  
Performance



50



51

UNDERSTANDING INDEX GROUPING AND 
AGGREGATION IN COUCHBASE N1QL QUERY

Authors: Sitaram Vemulapalli, Principal Engineer, Couchbase R&D
Deepkaran Salooja, Principal Engineer, Couchbase R&D

 
Couchbase N1QL is a modern query processing engine designed to provide SQL for JSON on 

distributed data with a flexible data model. Modern databases are deployed on massive clusters. 

Using JSON provides a flexible data mode. N1QL supports enhanced SQL for JSON to make 

query processing easier.

Applications and database drivers submit the N1QL query to one of the available Query nodes 

on a cluster. The Query node analyzes the query, uses metadata on underlying objects to figure 

out the optimal execution plan, which it then executes. During execution, depending on the 

query, using applicable indexes, query node works with index and data nodes to retrieve data 

and perform the planned operations. Because Couchbase is a modular clustered database, you 

scale out data, index, and query services to fit your performance and availability goals.

Prior to Couchbase 5.5, even when a query with GROUP BY and/or aggregates is covered by an 

index, the query fetched all relevant data from the indexer and performed grouping/aggregation 

of the data within the query engine.

http://www.couchbase.com/
http://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/index.html


52

In Couchbase 5.5 query planner enhanced to intelligently requests the indexer to perform 

grouping and aggregation in addition to range scan for covering index. The Indexer has been 

enhanced to perform grouping, COUNT(), SUM(), MIN(), MAX(), AVG(), and related operations 

on-the-fly. 

This requires no changes to the user query, but a good index design to cover the query and 

order the index keys is required. Not every query will benefit from this optimization, and not 

every index can accelerate every grouping and aggregation operation. Understanding the 

right patterns will help you design your indexes and queries. Index grouping and aggregation 

on global secondary index is supported with both storage engines: Standard GSI and Memory 

Optimized GSI (MOI). Index grouping and aggregation is supported in Enterprise Edition only.

This reduction step of performing the GROUP BY and Aggregation by the indexer reduces the 

amount of data transfer and disk I/O, resulting in:

•	 Improved query response time

•	 Improved resource utilization

•	 Low latency

•	 High scalability

•	 Low Total Cost of Ownership



53

Performance

The Index grouping and aggregations can improve query performance by orders of magnitude 

and reduce the latencies drastically. The following table list few sample query latency 

measurements.

Index : CREATE INDEX idx_ts_type_country_city ON `travel-sample` (type, country, city);

Query Description
5.0 

Latencies

5.5 

Latencies

SELECT t.type, COUNT(type) AS cnt
FROM `travel-sample` AS t 
WHERE t.type IS NOT NULL 
GROUP BY t.type;

•	 GROUP BY leading 

index key 

•	 Aggregation 

230ms 13ms

SELECT t.type, COUNT(1) AS cnt, 
           COUNT(DISTINCT city) AS 
cntdcity 
FROM `travel-sample` AS t 
WHERE t.type IN [“hotel”,”airport”] 
GROUP BY t.type, t.country;

•	 GROUP BY multiple  

leading index keys

•	 Multiple Aggregates

•	 Distinct Aggregate

40ms 7ms

SELECT t.country, COUNT(city) AS cnt 
FROM `travel-sample` AS t 
WHERE t.type = “airport” 
GROUP BY t.country;

•	 GROUP BY first  

non-equality leading 

index key

•	 Aggregation

25ms 3ms

SELECT t.city, cnt 
FROM `travel-sample` AS t 
WHERE t.type IS NOT NULL 
GROUP BY t.city 
LETTING cnt = COUNT(city) 
HAVING cnt > 0 ;

•	GROUP BY non-leading 

index key

•	LETTING clause

•	HAVING clause

300ms 160ms



54

Index Grouping and Aggregation Overview

The above figure shows all the possible phases a SELECT query goes through to return the 

results. The filtering process takes the initial keyspace and produces an optimal subset of the 

documents the query is interested in. To produce the smallest possible subset, indexes are 

used to apply as many predicates as possible. Query predicate indicates the subset of the data 

interested. During the query planning phase, we select the indexes to be used. Then, for each 

index, we decide the predicates to be applied by each index. The query predicates are translated 

into range scans in the query plan and passed to Indexer. 

If the query doesn’t have JOINs and is covered by index, both Fetch and Join phases can  

be eliminated. 

When all predicates are exactly translated to range scans Filter phase also can be eliminated. 

In that situation Scan and Aggregates are side by side, and since indexer has ability to do 

aggregation that phase can be done on indexer node. In some cases Sort, Offset, Limit phases 

can also be done indexer node.



55

The following flow chart describes how query planner decides to perform index aggregation for 

each query block of the query. If the index aggregation is not possible aggregations are done in 

query engine.



56

For example, let’s compare the previous vs. current performance of using GROUP BY and 

examine the EXPLAIN plan of the following query that uses an index defined on the Couchbase 

`travel-sample` bucket:

CREATE INDEX `def_type` ON `travel-sample`(`type`) 

Consider the query: 

SELECT type, COUNT(type)
FROM `travel-sample`
WHERE type IS NOT MISSING
GROUP BY type;

Before Couchbase version 5.5, this query engine fetched relevant data from the indexer and 

grouping and aggregation of the data is done within query engine. This simple query takes 

about 250 ms.

Now, in Couchbase version 5.5, this query uses the same def_type index, but executes in under 

20 ms. In the explain below, you can see fewer steps and the lack of the grouping step after the 

index scan because the index scan step does the grouping and aggregation as well.

 

 
 

As the data and query complexity grows, the performance benefit (both latency and 

throughput) will grow as well. 



57

Understanding EXPLAIN of Index Grouping and Aggregation

Looking at the explain of the query:

EXPLAIN SELECT type, COUNT(type) FROM `travel-sample` WHERE type IS NOT MISSING GROUP 
BY type;

1.	 {
2.	   "plan": {
3.	     "#operator": "Sequence",
4.	     "~children": [
5.	       {
6.	         "#operator": "IndexScan3",
7.	         "covers": [
8.	           "cover ((`travel-sample`.`type`))",
9.	           "cover ((meta(`travel-sample`).`id`))",
10.	           "cover (count(cover ((`travel-sample`.`type`))))"
11.	         ],
12.	         "index": "def_type",
13.	         "index_group_aggs": {
14.	           "aggregates": [
15.	             {
16.	               "aggregate": "COUNT",
17.	               "depends": [
18.	                 0
19.	               ],
20.	               "expr": "cover ((`travel-sample`.`type`))",
21.	               "id": 2,
22.	               "keypos": 0 
23.	             }
24.	           ],
25.	           "depends": [
26.	             0
27.	           ],
28.	           "group": [
29.	             {
30.	               "depends": [
31.	                 0
32.	               ],
33.	               "expr": "cover ((`travel-sample`.`type`))",
34.	               "id": 0,
35.	               "keypos": 0
36.	             }
37.	           ]
38.	         },
39.	         "index_id": "b948c92b44c2739f",
40.	         "index_projection": {
41.	           "entry_keys": [



58

42.	             0,
43.	             2
44.	           ]
45.	         },
46.	         "keyspace": "travel-sample",
47.	         "namespace": "default",
48.	         "spans": [
49.	           {
50.	             "exact": true,
51.	             "range": [
52.	               {
53.	                 "inclusion": 1,
54.	                 "low": "null"
55.	               }
56.	             ]
57.	           }
58.	         ],
59.	         "using": "gsi"
60.	       },
61.	       {
62.	         "#operator": "Parallel",
63.	         "~child": {
64.	           "#operator": "Sequence",
65.	           "~children": [
66.	             {
67.	               "#operator": "InitialProject",
68.	               "result_terms": [
69.	                 {
70.	                   "expr": "cover ((`travel-sample`.`type`))"
71.	                 },
72.	                 {
73.	                   "expr": "cover (count(cover ((`travel-sample`.`type`))))"
74.	                 }
75.	               ]
76.	             },
77.	             {
78.	               "#operator": "FinalProject"
79.	             }
80.	           ]
81.	         }
82.	       }
83.	     ]
84.	   },
85.	   "text": "SELECT type, COUNT(type) FROM `travel-sample` WHERE type IS 

NOT MISSING GROUP BY type;"
86.	 }



59

You will see “index_group_aggs” in the IndexScan section (i.e “#operator”: “IndexScan3”). If 

“index_group_aggs” is MISSING then query service is performing grouping and aggregation. 

If present query is using Index grouping and aggregation and it has all relevant information 

indexer required for grouping and aggregation. The following table describe how to interpret the 

various information of index_group_aggs object.

Field Name Description
Line numbers  
from Example

Explain Text  
in Example

aggregates Array of Aggregate 

objects, and each 

object represents 

one aggregate. The 

absence of this item 

means only group by 

is present in the query.

14-24 aggregates

aggregate Aggregate operation 

(MAX/MIN/SUM/COUNT/
COUNTN).

16 COUNT

distinct Aggregate modifier is 

DISTINCT

- False(When true only 
it appears)

depends List of index key 

positions (starting 

with 0) the aggregate 

expression depends 

on.

17-19 0 (because type is 0th 

index key of def_type 

index)

expr aggregate expression 20 cover ((`travel-

sample`.`type`))

id Unique ID given 

internally and will  

be used in  

index_projection

21 2



60

Field Name Description
Line numbers  
from Example

Explain Text  
in Example

keypos Indicator to that tells 

use expression at the 

index key position or 

from the expr field.

•	 A value > -1 means 

the  aggregate 

expression is 

exactly matches 

the corresponding 

index key position( 

starting with 0).

•	 A value of -1 means 

the ] aggregate 

expression does 

not exactly match 

with the index key 

position and use 

expression from 

expr field. means 

the aggregate 

expression is 

exactly matches 

the corresponding 

index key position( 

starting with 0). A 

value of -1 means 

the ] aggregate 

expression does 

not exactly match 

with the index key 

position and use 

expression from 

expr field.

22 0 (because type is 0th 

index key of def_type 

index)



61

Field Name Description
Line numbers  
from Example

Explain Text  
in Example

depends List of index key 

positions the 

groups/aggregates 

expressions depends 

on (consolidated list)

25-27 0

group Array of GROUP BY 

objects, and each 

object represents 

one group key. The 

absence of this item 

means there is no 

GROUP BY clause 

present in the query.

28-37 group

depends List of index key 

positions (starting 

with 0) the group 

expression depends 

on.

30-32 0 (because type is 0th 

key of index key of 

def_type index)

expr group expression. 33 cover ((`travel-

sample`.`type`))

id Unique ID given 

internally and will be 

used in  

index_projection.

34 0



62

Field Name Description
Line numbers  
from Example

Explain Text  
in Example

keypos Indicator to that tells 

use expression at the 

index key position or 

from the expr field. 

•	 A value > -1 

means the group 

expression is 

exactly matches 

the corresponding 

index key position ( 

starting with 0). 

•	 A value of -1 means 

the group key does 

not exactly match 

with the index key 

position and use 

expression from 

expr field.

35 0 (because type is 0th 

index key of def_type 

index)

The covers field is array and it has all the index keys, document key(META().id), group keys 

expressions that are not exactly matched with index keys (sorted by id), aggregates sorted by 

id. Also “Index_projection” will have all the group/aggregate ids.

    "covers": [
        "cover ((`travel-sample`.`type`))",                   ← Index key (0)
        "cover ((meta(`travel-sample`).`id`))",               ← document key (1)
        "cover (count(cover ((`travel-sample`.`type`))))"     ←  aggregate (2)
      ]

In above case group expression `type` is same Index key of index `def_type`. It is not  

included twice.



63

Details of Index Grouping and Aggregation

We will use examples to show how Index grouping and aggregations works. To follow the 

examples please create a bucket “default” and insert the following documents:

INSERT INTO default (KEY,VALUE) 
VALUES ("ga0001", {"c0":1, "c1":10, "c2":100, "c3":1000, "c4":10000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0002", {"c0":1, "c1":20, "c2":200, "c3":2000, "c4":20000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0003", {"c0":1, "c1":10, "c2":300, "c3":3000, "c4":30000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0004", {"c0":1, "c1":20, "c2":400, "c3":4000, "c4":40000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0005", {"c0":2, "c1":10, "c2":100, "c3":5000, "c4":50000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0006", {"c0":2, "c1":20, "c2":200, "c3":6000, "c4":60000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0007", {"c0":2, "c1":10, "c2":300, "c3":7000, "c4":70000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]}),
VALUES ("ga0008", {"c0":2, "c1":20, "c2":400, "c3":8000, "c4":80000, "a1":[{"id":1}, 
{"id":1}, {"id":2}, {"id":3}, {"id":4}, {"id":5}]});

Example 1: Group by leading index keys

Let consider the following query and index:

SELECT d.c0 AS c0, d.c1 AS c1, SUM(d.c3) AS sumc3, 
AVG(d.c4) AS avgc4, COUNT(DISTINCT d.c2) AS dcountc2
FROM default AS d
WHERE d.c0 > 0
GROUP BY d.c0, d.c1
ORDER BY d.c0, d.c1
OFFSET 1 
LIMIT 2;

Required Index:

CREATE INDEX idx1 ON default(c0,c1,c2,c3,c4);



64

The query has GROUP BY and multiple aggregates, some of aggregates has DISTINCT modifier. 

The query can be covered by index idx1 and the predicate (d.c0 > 0) can be converted into exact 

range scan and passed it to index scan. So, the index and query combination qualifies Index 

grouping and aggregations.

Indexes are naturally ordered and grouped by the order of the index key definition. In the above 

query, the GROUP BY keys (d.c0, d.c1) exactly matches with the leading keys (c0, c1) of the 

index. Therefore, index has each group data together, indexer will produce one row per group i.e. 

Full aggregation.  Also, query has aggregate that has DISTINCT modifier and it exactly matches 

with one of the index keys with position less than or equal to number of group keys plus one 

(i.e. there 2 group keys, DISTINCT modifier can be any one of index key at position 0,1,2 because 

index key followed by group keys and DISTINCT modifier can applied without sort). Therefore, 

the query above is suitable for indexer to handle grouping and aggregation. 

If group by missing one of the leading index key and there is equality predicate, then special 

optimization is done by treating the index key implicitly present in group keys and determine if 

Full aggregation is possible or not. For partition index the all the partition keys needs to present 

in the group keys to generate Full aggregations.

1.	 {
2.	   "plan": {
3.	     "#operator": "Sequence",
4.	     "~children": [
5.	       {
6.	         "#operator": "Sequence",
7.	         "~children": [
8.	           {
9.	             "#operator": "IndexScan3",
10.	             "as": "d",
11.	             "covers": [
12.	               "cover ((`d`.`c0`))",
13.	               "cover ((`d`.`c1`))",
14.	               "cover ((`d`.`c2`))",
15.	               "cover ((`d`.`c3`))",
16.	               "cover ((`d`.`c4`))",



65

17.	               "cover ((meta(`d`).`id`))",
18.	               "cover (count(distinct cover ((`d`.`c2`))))",
19.	               "cover (countn(cover ((`d`.`c4`))))",
20.	               "cover (sum(cover ((`d`.`c3`))))",
21.	               "cover (sum(cover ((`d`.`c4`))))"
22.	             ],
23.	             "index": "idx1",
24.	             "index_group_aggs": {
25.	               "aggregates": [
26.	                 {
27.	                   "aggregate": "COUNT",
28.	                   "depends": [
29.	                     2
30.	                   ],
31.	                   "distinct": true,
32.	                   "expr": "cover ((`d`.`c2`))",
33.	                   "id": 6,
34.	                   "keypos": 2
35.	                 },
36.	                 {
37.	                   "aggregate": "COUNTN",
38.	                   "depends": [
39.	                     4
40.	                   ],
41.	                   "expr": "cover ((`d`.`c4`))",
42.	                   "id": 7,
43.	                   "keypos": 4
44.	                 },
45.	                 {
46.	                   "aggregate": "SUM",
47.	                   "depends": [
48.	                     3
49.	                   ],
50.	                   "expr": "cover ((`d`.`c3`))",
51.	                   "id": 8,
52.	                   "keypos": 3
53.	                 },
54.	                 {
55.	                   "aggregate": "SUM",
56.	                   "depends": [
57.	                     4
58.	                   ],
59.	                   "expr": "cover ((`d`.`c4`))",
60.	                   "id": 9,
61.	                   "keypos": 4
62.	                 }
63.	               ],
64.	               "depends": [
65.	                 0,



66

66.	                 1,
67.	                 2,
68.	                 3,
69.	                 4
70.	               ],
71.	               "group": [
72.	                 {
73.	                   "depends": [
74.	                     0
75.	                   ],
76.	                   "expr": "cover ((`d`.`c0`))",
77.	                   "id": 0,
78.	                   "keypos": 0
79.	                 },
80.	                 {
81.	                   "depends": [
82.	                     1
83.	                   ],
84.	                   "expr": "cover ((`d`.`c1`))",
85.	                   "id": 1,
86.	                   "keypos": 1
87.	                 }
88.	               ]
89.	             },
90.	             "index_id": "d06df7c5d379cd5",
91.	             "index_order": [
92.	               {
93.	                 "keypos": 0
94.	               },
95.	               {
96.	                 "keypos": 1
97.	               }
98.	             ],
99.	             "index_projection": {
100.	               "entry_keys": [
101.	                 0,
102.	                 1,
103.	                 6,
104.	                 7,
105.	                 8,
106.	                 9
107.	               ]
108.	             },
109.	             "keyspace": "default",
110.	             "limit": "2",
111.	             "namespace": "default",
112.	             "offset": "1",
113.	             "spans": [



67

114.	               {
115.	                 "exact": true,
116.	                 "range": [
117.	                   {
118.	                     "inclusion": 0,
119.	                     "low": "0"
120.	                   }
121.	                 ]
122.	               }
123.	             ],
124.	             "using": "gsi"
125.	           },
126.	           {
127.	             "#operator": "Parallel",
128.	             "maxParallelism": 1,
129.	             "~child": {
130.	               "#operator": "Sequence",
131.	               "~children": [
132.	                 {
133.	                   "#operator": "InitialProject",
134.	                   "result_terms": [
135.	                     {
136.	                       "as": "c0",
137.	                       "expr": "cover ((`d`.`c0`))"
138.	                     },
139.	                     {
140.	                       "as": "c1",
141.	                       "expr": "cover ((`d`.`c1`))"
142.	                     },
143.	                     {
144.	                       "as": "sumc3",
145.	                       "expr": "cover (sum(cover ((`d`.`c3`))))"
146.	                     },
147.	                     {
148.	                       "as": "avgc4",
149.	                       "expr": "(cover (sum(cover ((`d`.`c4`)))) / cover (count-
n(cover ((`d`.`c4`)))))"
150.	                     },
151.	                     {
152.	                       "as": "dcountc2",
153.	                       "expr": "cover (count(distinct cover ((`d`.`c2`))))"
154.	                     }
155.	                   ]
156.	                 },
157.	                 {
158.	                   "#operator": "FinalProject"
159.	                 }
160.	               ]



68

161.	             }
162.	           }
163.	         ]
164.	       },
165.	       {
166.	         "#operator": "Limit",
167.	         "expr": "2"
168.	       }
169.	     ]
170.	   },
171.	   "text": "SELECT d.c0 AS c0, d.c1 AS c1, SUM(d.c3) AS sumc3, AVG(d.c4) AS 

avgc4, COUNT(DISTINCT d.c2) AS dcountc2 FROM default AS d\nWHERE d.c0 > 0 GROUP BY 
d.c0, d.c1 ORDER BY d.c0, d.c1 OFFSET 1  LIMIT 2;"

172.	 }

•	 The “index_group_aggs” (lines 24-89) in the IndexScan section (i.e “#operator”: “IndexScan3”) 

shows query using index grouping and aggregations. 

•	 If query uses index grouping and aggregation the predicates are exactly converted to range 

scans and passed to index scan as part of spans, so there will not be any Filter operator in  

the explain.

•	 As group by keys exactly match the leading index keys, indexer will produce full 

aggregations. Therefore, we also eliminate grouping in query service (There is no InitialGroup, 

IntermediateGroup, FinalGroup operators in the explain). 

•	 Indexer projects “index_projection” (lines 99-107) including all group keys and aggregates.

•	 Query ORDER BY matches with leading index keys and GROUP BY is on leading index keys 

we can use index order. This can be found in explain (lines 91-98) and will not use “#operator”: 

“Order” between line 164-165.  

•	 As query can use index order and there is no HAVING clause in the query the “offset” and 

“limit” values can be passed to indexer. 

•	 This can be found at line 112, 110. The “offset” can be applied only once you will not see 

“#operator”: “Offset” between line 164-165, But re-applying “limit” is no-op. This can be seen 

at line 165-168.

•	 Query contains AVG(x) it has been rewritten as SUM(x)/COUNTN(x). The COUNTN(x) only 

counts when x is numeric value.

Example 2: Group by leading index keys, LETTING, HAVING 

Let consider the following query and index:



69

SELECT d.c0 AS c0, d.c1 AS c1, sumc3 AS sumc3, 
AVG(d.c4) AS avgc4, COUNT(DISTINCT d.c2) AS dcountc2
FROM default AS d
WHERE d.c0 > 0
GROUP BY d.c0, d.c1
LETTING sumc3 = SUM(d.c3)
HAVING sumc3 > 0
ORDER BY d.c0, d.c1
OFFSET 1 
LIMIT 2;

Required Index:

CREATE INDEX idx1 ON default(c0,c1,c2,c3,c4);

The above query is similar to Example 1 but it has LETTING, HAVING clause. Indexer will not be 

able to handle these and thus LETTING and HAVING clauses are applied in query service after 

grouping and aggregations. Therefore you see Let, Filter operators after IndexScan3 in execution 

tree. Having clause is filter and further eliminates items thus “offset”, “limit” can’t be pushed to 

indexer and need to be applied in query service, but we still can use index order.

Example 3: Group by non-leading index keys

Let consider the following query and index:

SELECT d.c1 AS c1, d.c2 AS c2, SUM(d.c3) AS sumc3, 
AVG(d.c4) AS avgc4, COUNT(d.c2) AS countc2
FROM default AS d
WHERE d.c0 > 0
GROUP BY d.c1, d.c2
ORDER BY d.c1, d.c2
OFFSET 1 
LIMIT 2;



70

Required Index:

CREATE INDEX idx1 ON default(c0,c1,c2,c3,c4);   

The query has GROUP BY and multiple aggregates. The query can be covered by index idx1 and 

the predicate (d.c0 > 0) can be converted into exact range scan and passed it to index scan. So, 

the index and query combination qualifies Index grouping and aggregations.

In the above query, the GROUP BY keys (d.c1, d.c2) do NOT match the leading keys (c0, c1) of 

the index. The groups are scattered across the index. Therefore, indexer will produce multiple 

rows per each group i.e. Partial aggregation. In case of partial aggregation query service does 

group merge, query can’t use index order or push “offset”, “limit” to indexer. In case of partial 

aggregation if any aggregate has DISTINCT modifier index grouping and aggregation is not 

possible. The query above is suitable for indexer to handle grouping and aggregation.  

The above graphical execution tree shows index scan (IndexScan3) performing scan and index 

grouping aggregations. The results from the index scan are grouped again and projected.

Let’s look at the text based explain:

1.	 {
2.	   "plan": {
3.	     "#operator": "Sequence",
4.	     "~children": [
5.	       {
6.	         "#operator": "Sequence",
7.	         "~children": [
8.	           {
9.	             "#operator": "IndexScan3",
10.	             "as": "d",
11.	             "covers": [
12.	               "cover ((`d`.`c0`))",
13.	               "cover ((`d`.`c1`))",
14.	               "cover ((`d`.`c2`))",
15.	               "cover ((`d`.`c3`))",
16.	               "cover ((`d`.`c4`))",



71

17.	               "cover ((meta(`d`).`id`))",
18.	               "cover (count(cover ((`d`.`c2`))))",
19.	               "cover (countn(cover ((`d`.`c4`))))",
20.	               "cover (sum(cover ((`d`.`c3`))))",
21.	               "cover (sum(cover ((`d`.`c4`))))"
22.	             ],
23.	             "index": "idx1",
24.	             "index_group_aggs": {
25.	               "aggregates": [
26.	                 {
27.	                   "aggregate": "COUNT",
28.	                   "depends": [
29.	                     2
30.	                   ],
31.	                   "expr": "cover ((`d`.`c2`))",
32.	                   "id": 6,
33.	                   "keypos": 2
34.	                 },
35.	                 {
36.	                   "aggregate": "COUNTN",
37.	                   "depends": [
38.	                     4
39.	                   ],
40.	                   "expr": "cover ((`d`.`c4`))",
41.	                   "id": 7,
42.	                   "keypos": 4
43.	                 },
44.	                 {
45.	                   "aggregate": "SUM",
46.	                   "depends": [
47.	                     3
48.	                   ],
49.	                   "expr": "cover ((`d`.`c3`))",
50.	                   "id": 8,
51.	                   "keypos": 3
52.	                 },
53.	                 {
54.	                   "aggregate": "SUM",
55.	                   "depends": [
56.	                     4
57.	                   ],
58.	                   "expr": "cover ((`d`.`c4`))",
59.	                   "id": 9,
60.	                   "keypos": 4
61.	                 }
62.	               ],
63.	               "depends": [
64.	                 1,
65.	                 2,



72

66.	                 3,
67.	                 4
68.	               ],
69.	               "group": [
70.	                 {
71.	                   "depends": [
72.	                     1
73.	                   ],
74.	                   "expr": "cover ((`d`.`c1`))",
75.	                   "id": 1,
76.	                   "keypos": 1
77.	                 },
78.	                 {
79.	                   "depends": [
80.	                     2
81.	                   ],
82.	                   "expr": "cover ((`d`.`c2`))",
83.	                   "id": 2,
84.	                   "keypos": 2
85.	                 }
86.	               ],
87.	               "partial": true
88.	             },
89.	             "index_id": "d06df7c5d379cd5",
90.	             "index_projection": {
91.	               "entry_keys": [
92.	                 1,
93.	                 2,
94.	                 6,
95.	                 7,
96.	                 8,
97.	                 9
98.	               ]
99.	             },
100.	             "keyspace": "default",
101.	             "namespace": "default",
102.	             "spans": [
103.	               {
104.	                 "exact": true,
105.	                 "range": [
106.	                   {
107.	                     "inclusion": 0,
108.	                     "low": "0"
109.	                   }
110.	                 ]
111.	               }
112.	             ],
113.	             "using": "gsi"
114.	           },



73

115.	           {
116.	             "#operator": "Parallel",
117.	             "~child": {
118.	               "#operator": "Sequence",
119.	               "~children": [
120.	                 {
121.	                   "#operator": "InitialGroup",
122.	                   "aggregates": [
123.	                     "sum(cover (count(cover ((`d`.`c2`)))))",
124.	                     "sum(cover (countn(cover ((`d`.`c4`)))))",
125.	                     "sum(cover (sum(cover ((`d`.`c3`)))))",
126.	                     "sum(cover (sum(cover ((`d`.`c4`)))))"
127.	                   ],
128.	                   "group_keys": [
129.	                     "cover ((`d`.`c1`))",
130.	                     "cover ((`d`.`c2`))"
131.	                   ]
132.	                 }
133.	               ]
134.	             }
135.	           },
136.	           {
137.	             "#operator": "IntermediateGroup",
138.	             "aggregates": [
139.	               "sum(cover (count(cover ((`d`.`c2`)))))",
140.	               "sum(cover (countn(cover ((`d`.`c4`)))))",
141.	               "sum(cover (sum(cover ((`d`.`c3`)))))",
142.	               "sum(cover (sum(cover ((`d`.`c4`)))))"
143.	             ],
144.	             "group_keys": [
145.	               "cover ((`d`.`c1`))",
146.	               "cover ((`d`.`c2`))"
147.	             ]
148.	           },
149.	           {
150.	             "#operator": "FinalGroup",
151.	             "aggregates": [
152.	               "sum(cover (count(cover ((`d`.`c2`)))))",
153.	               "sum(cover (countn(cover ((`d`.`c4`)))))",
154.	               "sum(cover (sum(cover ((`d`.`c3`)))))",
155.	               "sum(cover (sum(cover ((`d`.`c4`)))))"
156.	             ],
157.	             "group_keys": [
158.	               "cover ((`d`.`c1`))",
159.	               "cover ((`d`.`c2`))"
160.	             ]
161.	           },
162.	           {
163.	             "#operator": "Parallel",



74

164.	             "~child": {
165.	               "#operator": "Sequence",
166.	               "~children": [
167.	                 {
168.	                   "#operator": "InitialProject",
169.	                   "result_terms": [
170.	                     {
171.	                       "as": "c1",
172.	                       "expr": "cover ((`d`.`c1`))"
173.	                     },
174.	                     {
175.	                       "as": "c2",
176.	                       "expr": "cover ((`d`.`c2`))"
177.	                     },
178.	                     {
179.	                       "as": "sumc3",
180.	                       "expr": "sum(cover (sum(cover ((`d`.`c3`)))))"
181.	                     },
182.	                     {
183.	                       "as": "avgc4",
184.	                       "expr": "(sum(cover (sum(cover ((`d`.`c4`))))) / sum(cover 
(countn(cover ((`d`.`c4`))))))"
185.	                     },
186.	                     {
187.	                       "as": "countc2",
188.	                       "expr": "sum(cover (count(cover ((`d`.`c2`)))))"
189.	                     }
190.	                   ]
191.	                 }
192.	               ]
193.	             }
194.	           }
195.	         ]
196.	       },
197.	       {
198.	         "#operator": "Order",
199.	         "limit": "2",
200.	         "offset": "1",
201.	         "sort_terms": [
202.	           {
203.	             "expr": "cover ((`d`.`c1`))"
204.	           },
205.	           {
206.	             "expr": "cover ((`d`.`c2`))"
207.	           }
208.	         ]
209.	       },
210.	       {
211.	         "#operator": "Offset",



75

212.	         "expr": "1"
213.	       },
214.	       {
215.	         "#operator": "Limit",
216.	         "expr": "2"
217.	       },
218.	       {
219.	         "#operator": "FinalProject"
220.	       }
221.	     ]
222.	   },
223.	   "text": "SELECT d.c1 AS c1, d.c2 AS c2, SUM(d.c3) AS sumc3, AVG(d.c4) AS 
avgc4, COUNT(d.c2) AS countc2 FROM default AS d WHERE d.c0 > 0 GROUP BY d.c1, d.c2 OR-
DER BY d.c1, d.c2 OFFSET 1  LIMIT 2;"
224.	 }

•	 The “index_group_aggs” (lines 24-88) in the IndexScan section (i.e “#operator”: “IndexScan3”) 

shows query using index grouping and aggregations. 

•	 If query uses index grouping and aggregation the predicates are exactly converted to range 

scans and passed to index scan as part of spans, so there will not be any Filter operator in  

the explain.

•	 As group by keys did NOT match the leading index keys, indexer will produce partial 

aggregations. This can be seen as “partial”:true inside “index_group_aggs” at line 87. Query 

service does Group merging (see line 119-161)

•	 Indexer projects “index_projection” (lines 91-99) containing group keys and aggregates.

•	 If the Indexer generates partial aggregations query can’t use index order and requires explicit 

sort, and “offset”, “limit” can’t be pushed to indexer. The plan will have explicit “Order”, 

“Offset”, and “Limit” operators (line 197 - 217)

•	 Query contains AVG(x) which has been rewritten as SUM(x)/COUNTN(x). The COUNTN(x) 

only counts when x is numeric value.

•	 During Group merge

•	 MIN becomes MIN of MIN

•	 MAX becomes MAX of MAX

•	 SUM becomes SUM of SUM

•	 COUNT becomes SUM of COUNT

•	 CONTN becomes SUM of COUNTN

•	 AVG becomes SUM of SUM divided by SUM of COUNTN



76

Example 4: Group and Aggregation with array index

Let consider the following query and index:

SELECT d.c0 AS c0, d.c1 AS c1, SUM(d.c3) AS sumc3, 
AVG(d.c4) AS avgc4, COUNT(DISTINCT d.c2) AS dcountc2
FROM default AS d
WHERE d.c0 > 0 AND d.c1 >= 10 AND ANY v IN d.a1 SATISFIES v.id = 3 END
GROUP BY d.c0, d.c1
ORDER BY d.c0, d.c1
OFFSET 1 
LIMIT 2;

Required Index:

CREATE INDEX idxad1 ON default(c0,c1, DISTINCT ARRAY v.id FOR v IN a1 END, c2,c3,c4);

The query has GROUP BY and multiple aggregates, some of aggregates has DISTINCT modifier. 

The query predicate has ANY clause and query can be covered by array index index idxad1. 

The predicate (d.c0 > 0 AND d,c11 >= 10 AND ANY v IN d.a1 SATISFIES v.id = 3 END ) can be 

converted into exact range scans and passed to index scan. For array index Indexer maintain 

separate element for each array index key, in order to use index group and aggregation the 

SATISFIES predicate must have a single equality predicate and the array index key must have 

DISTINCT modifier. Therefore index and query combination is suitable to handle Index grouping 

and aggregations.

This example is similar to example 1 except it uses an array index. The above graphical execution 

tree shows index scan (IndexScan3) performing scan, index grouping aggregations, order, offset 

and limit. The results from the index scan are projected.



77

Example 5: Group and Aggregation of UNNEST Operation

Let consider the following query and index:

SELECT v.id AS id, d.c0 AS c0, SUM(v.id) AS sumid, 
AVG(d.c1) AS avgc1
FROM default AS d UNNEST d.a1 AS v 
WHERE v.id > 0 
GROUP BY v.id, d.c0;

Required Index:

CREATE INDEX idxaa1 ON default(ALL ARRAY v.id FOR v IN a1 END, c0,c1);

The query has GROUP BY and multiple aggregates. The query has UNNEST on array d.a1 and 

have predicate on the array key (v.id > 0). The index idxaa1 qualifies query (For Unnest to use 

Array index for Index scan the array index must be leading key and array variable in the index 

definition must match with UNNEST alias). The predicate (v.id > 0) can be converted into exact 

range scans and passed to index scan. Therefore index and query combination is suitable to 

handle Index grouping and aggregations.

The above graphical execution tree shows index scan (IndexScan3) performing scan, index 

grouping aggregations. The results from the index scan are projected. The UNNEST is special 

type of JOIN between parent and each array element. Therefore, the UNNEST repeats the parent 

document fields (d.c0, d.c1) and the d.c0, dc.1 reference would have duplicates compared to the 

original d documents (Need to aware this while using in SUM(), AVG()).



78

Rules for Index Grouping and Aggregation

The Index grouping and aggregation are per query block, and decision on whether or not use 

index grouping/aggregation is made only after index selection process.

•	 Query block should not contain Joins, NEST, SUBqueries.

•	 Query block must be covered by singline index.

•	 Query block should not contain ARRAY_AGG()

•	 Query block can’t be correlated

•	 All the predicates must be exactly translated into range scans.

•	 GROUP BY, Aggregate expressions can’t reference any subquires, named parameters, 

positional parameters.

•	 GROUP BY keys, aggregate expressions can be index keys, document key, expression on index 

keys, or expression on document key

•	 Index needs to be able to do grouping and aggregation on all the aggregates in query block 

otherwise no index aggregation. (i.e. ALL or None)

•	 Aggregate contain DISTINCT modifier

•	 The group keys must exactly match with leading index keys (if the query contains 

equality predicate on the index key, then it assumes this index key is implicitly included 

in GROUP keys if not already present). 

•	 The aggregate expression must be on one of the n+1 leading index keys (n represents 

number of group keys).

•	  In case of partition index the partition keys must exactly match with group keys.

Summary

When you analyze the explain plan, correlate the predicates in the explain to the spans and 

make sure all the predicate exactly translated to range scans and query is covered. Ensure query 

using index grouping and aggregations, and if possible query using full aggregations from 

indexer by adjusting index keys for better performance.



Index Partitioning



80



81

INDEX PARTITIONING

Authors: John Liang, Couchbase R&D
Keshav Murthy, Couchbase R&D

In Couchbase, data is always partitioned using the consistent hash value of the document key 

into vbukets which are stored on the data nodes. Couchbase Global Secondary Index (GSI) 

abstracts the indexing operations and runs as a distinct service within the Couchbase data 

platform. When a single index can cover a whole type of documents, everything is good. But, 

there are cases where you’re want to partition an index.

1.	 Capacity: You want increased capacity because a single node is unable to hold a big index 

2.	 Queriability: You want to avoid rewriting the query to work with manual partitioning of the 

index using a partial index.

3.	 Performance: Single index is unable to meet the SLA

To address this, Couchbase 5.5 introduces automatic hash partitioning of the index. You’re used 

to having bucket data hashed into multiple nodes. Index partitioning enables you to hash the 

index into multiple nodes as well. There is good symmetry.

Creating the index is easy.  Simply add a PARTITION BY clause to the CREATE index definition.

CREATE INDEX ih ON customer(state, name, zip, status)  
     PARTITION BY HASH(state)  
     WHERE type = "cx" WITH {"num_partition":8}

CREATE INDEX ih ON customer(state, name, zip, status) 
PARTITION BY HASH(state) 
WHERE type = “cx” WITH {“num_partition”:8}

This as the following meta data in the system:indexes. Note the new field partition with the hash 

expression. The HASH(state) is the basis on which the index logically named `customer`.`ih` is 

divided into a number of physical index partitions. By default, the number of index partitions are 

16 and it can be changed by specifying num_partition parameter. In the example above, we 

create 8 partitions for the index `customer`.`ih`.

https://en.wikipedia.org/wiki/Consistent_hashing
https://developer.couchbase.com/documentation/server/5.5/architecture/global-secondary-indexes.html


82

select * 
from system:indexes 
where keyspace_id = "customer" and name = "ih" ;
  {
    "indexes": {
      "condition": "(`type` = \"cx\")",
      "datastore_id": "http://127.0.0.1:8091",
      "id": "b3ce745f84256319",
      "index_key": [
        "`state`",
        "`name`",
        "`zip`",
        "`status`"
      ],
      "keyspace_id": "customer",
      "name": "ih",
      "namespace_id": "default",
      "partition": "HASH(`state`)",
      "state": "online",
      "using": "gsi"
    }
  }

Now, issue the following query. You don’t need additional predicate on the hash key for the 

query to use the index. The index scan simply scans all of the index partitions as part of the 

index scan.

SELECT * 
FROM customer 
WHERE type = "cx" 
      and name = "acme" 
      and zip = "94051";

However, if you do have an equality predicate on the hash key, index scan detects the right index 

partition having the right range of data and prunes rest of the index nodes from the index scan.    

This makes the index scan very efficient.

SELECT * 
FROM customer 
WHERE type = "cx" 
      and name = "acme" 
      and zip = "94051"
      and state = "CA";

Now, let’s look at how this index helps you with three things we mentioned before: Capacity, 

Queriability and Performance.



83

Capacity

The query `customer`.`ih` will be partitioned to a specified number of partitioned with 

each partition stored on one of the index nodes on the cluster. The indexer uses a stochastic 

optimization algorithm to determine how to distribute the partitions onto the set of indexer 

nodes, based on the free resource available on each node. Alternatively, to restrict the index to a 

specific set of nodes, use the nodes parameter. This index will create eight index partitions and 

store four each on the four index nodes specified.  

CREATE INDEX ih ON customer(state, name, zip, status) 
     PARTITION BY HASH(state) 
     WHERE type = "cx" WITH {"num_partition":8, 
     "nodes":["172.23.125.32:9001", "172.23.125.28:9001"],  
"172.23.93.82:9001","172.23.45.20:9001" ]}

So, with this hash partitioned index, one logical index (`customer`.`ih`) will be partitioned into a 

number of physical index partitions (in this case, 8 partitions) and give the query an illusion of a 

single index.  

Because this index uses the multiple physical nodes, the index will have more disk, memory  

and CPU resources available. Increased storage in these nodes makes it possible to create  

larger indexes.

You write your queries, as usual, requiring predicates only the WHERE clause (type = “cx”) an at 

least on one of the leading index keys (e.g. name).  



84

Queriability

Limitations in the Couchbase 5.0 indexing:

Until Couchbase 5.0, you could manually partition the index like below. You had to partition 

them manually using the WHERE clause on the CREATE INDEX. Consider the following indexes, 

one per state. By using the node parameter, you could place them in specific index nodes or the 

index will try to automatically spread out within the index nodes.

CREATE INDEX i1 ON customer(name, zip, status) WHERE state = "CA";
CREATE INDEX i2 ON customer(name, zip, status) WHERE state = "NV";
CREATE INDEX i3 ON customer(name, zip, status) WHERE state = "OR";
CREATE INDEX i4 ON customer(name, zip, status) WHERE state = "WA";

For a simple query with equalify predicate on state, it all works well.

SELECT * 
FROM customer 
WHERE state = "CA" and name = "acme" and zip = "94051";

There are two issues with this manual partitioning.   

1.	 Consider the following with slightly complex predicate on the state. Because the predicate 

(state IN [“CA”, “OR”]) is not a subset of any of the WHERE clauses of the index, none of 

the indexes can be used for the query below.

SELECT * FROM customer 
     WHERE state IN ["CA", "OR"] and name = ACME; 
SELECT * FROM customer 
     WHERE state > "CA" and name = ACME;

2.	 If you get data to a new state, you’re to be aware of it and create the index in advance.

SELECT * FROM customer WHERE state = "CO" and name = ACME

If the field numerical field, you can use the MOD() function.

CREATE INDEX ix1 ON customer(name, zip, status) 
		  WHERE (MOD(cxid) % 4 = 0);
CREATE INDEX ix2 ON customer(name, zip, status) 
		  WHERE (MOD(cxid) % 4 = 1);
CREATE INDEX ix3 ON customer(name, zip, status) 
		  WHERE (MOD(cxid) % 4 = 2);
CREATE INDEX ix4 ON customer(name, zip, status) 
WHERE (MOD(cxid) % 4 = 3);



85

Even this work around each query block can only use one index and requires queries to be 

written carefully to match one of the predicates in the WHERE clause.

Solution:

As you see from the figure above, the interaction between the query and index goes through 

the GSI client sitting inside each query node. Each GSI client gives the illusion of a single logical 

index (`customer`.`ih`) on top of eight physical index partitions.  

The GSI client takes all of the index scan request and then using the predicate, tries to see if 

it can identify which of index partitions has the data needed for the query. This is the process 

of partition pruning (aka partition elimination). For the hash based partitioning scheme, 

equality and IN clause predicates get the benefit of partition pruning. All other expressions use 

the scatter-gather method. After the logical elimination, GSI client sends the request to the 

remaining nodes, gets the result, merges the result and sends the result back to query. The big 

benefit of this is that queries can be written without worrying about the manual partitioning 

expression. 

Example query below does not even have a predicate on the hash key, state. The below query 

does not get the benefit of partition elimination. Therefore, the GSI client issues scan to every 

index partition in parallel and then merges the result from each of the index scan. The big 

benefit of this is that queries can be written without worrying about the manual partitioning 

expression to match the partial index expression and still use the full capacity of the cluster 

resources. 

CREATE INDEX ih1 ON customer(name, zip, status) 
PARTITION BY HASH(state) 
WHERE type = "cx" WITH {"num_partition":8}

SELECT * 
FROM customer 
WHERE type = "cx" 
      and name = "acme" 
      and zip = "94051";

Additional predicate on the hash key (state = “CA”) in the query below will benefit from 

partition pruning. For query processing, for simple queries with equality predicates on hash 

key, you get uniform distribution of the workload on these multiple partitions of the index. For 

complex queries including the grouping & aggregation we discussed above, the scans, partial 

aggregations are done in parallel, improving the query latency.  



86

SELECT * 
FROM customer 
WHERE type = "cx" 
     and name = "acme" 
     and zip = "94051"
     and state = "CA";

You can create indexes by hashing on one or more keys, each of which could be an expression.  

Here are some examples.

CREATE INDEX idx1 ON customer(name) PARTITION BY HASH(META().id);
CREATE INDEX idx2 ON customer(name) PARTITION BY HASH(name, zip);
CREATE INDEX idx3 ON customer(name) 
                      PARTITION BY HASH(SUBSTR(name, 5, 10));
CREATE INDEX idx3 ON customer(name) 
     PARTITION BY 
     HASH(SUBSTR(META().id, POSITION(META().id, "::")+2), zip)

Performance

For majority of database features, performance is everything. Without a great performance, 

proven by good benchmarks, the features are simply pretty syntax diagrams!

Index partitioning gives you improved performance in two ways.

1.	 Scale out. The partitions are distributed into multiple nodes, increasing the CPU and 

memory availability of for the index scan.  

2.	 Parallel scan. Right predicate giving queries the benefit of partition pruning. Even after the 

pruning process, scans of all the indexes are done in parallel.

3.	 Parallel grouping and aggregation. The DZone article Understanding Index Grouping and 

Aggregation in Couchbase N1QL Queries explains the core performance improvement of 

grouping and aggregation using indexes.  

4.	 The parallelism of the index parallel scan (and grouping, aggregation) is determined by 

the max_parallelism parameter. This parameter can be set per query node and/or per 

query request.

https://dzone.com/articles/understanding-index-grouping-and-aggregation-in-co
https://dzone.com/articles/understanding-index-grouping-and-aggregation-in-co
https://developer.couchbase.com/documentation/server/current/settings/query-settings.html


87

Consider the following index and query:

CREATE INDEX ih1 ON customer(name, zip, status) 
PARTITION BY HASH(state) 
WHERE type = "cx" WITH {"num_partition":8}

select zip, count(1) zipcount
from customer
where type = "cx" and name is not missing
group by zip;

The index is partitioned by HASH(state), but state predicate is missing from the query. For this 

query, we cannot do partition pruning or create groups within individual scans of the index 

partitions. Therefore, it will need a merge phase after the partial aggregation with the query (not 

shown in the explain). Remember, these partial aggregations happen in parallel and therefore 

reduces the latency of the query.

	



88

Consider the following index and query:

CREATE INDEX ih2 ON customer(state, city, zip, status) 
PARTITION BY HASH(zip) 
WHERE type = "cx" WITH {"num_partition":8}

Example a:

select state, count(1) zipcount
from customer
where state is not missing
group by state, city, zip;

In the above example, the group by is on the leading keys (state, city, zip) of the index and hash 

key (zip) is part of the group by clause. This will help the query to scan the index and simply 

created the required groups	

Example b:

select zip, count(1) zipcount
from customer
where type = "cx" 
and city = "San Francisco"
and state = "CA"
group by zip;

In the above example, the group by is on the third key (zip) of the index and hash key (zip) is 

part of the group by clause. In the predicate clause (WHERE clause), there is single equality 

predicate on the leading index keys before the key zip (state and city).  Therefore, we implicitly 

include the keys (state, city) in the group by without affecting the query result. This will help the 

query to scan the index and simply created the required groups.

Example c:

select zip, count(1) zipcount
from customer
where type = "cx" 
and city like "San%"
and state = "CA"
group by zip;



89

In the above example, the group by is on the third key (zip) of the index and hash key (zip) is 

part of the group by clause. In the predicate clause (WHERE clause), there is range predicate  

on city. The index key (city) is before the hash key(zip). So, we create partial aggregates as  

part of the index scan and then then query will merge these partial aggregates to create the 

final resultset. 

Summary

Index partition gives you increased capacity for your index, better queriability and higher 

performance for your queries.  By exploiting the Couchbase scale-out architecture, indexes 

improve your capacity, queriability, performance and TCO.  

References

1.	 Couchbase documentation:  

https://developer.couchbase.com/documentation/server/5.5/indexes/gsi-for-n1ql.html

2.	 Couchbase N1QL documentation:  

https://developer.couchbase.com/documentation/server/5.5/indexes/gsi-for-n1ql.html#

https://developer.couchbase.com/documentation/server/5.5/indexes/gsi-for-n1ql.html
https://developer.couchbase.com/documentation/server/5.5/indexes/gsi-for-n1ql.html#
https://developer.couchbase.com/documentation/server/5.5/indexes/gsi-for-n1ql.html#


90



N1QL Auditing



92



93

AUDITING COUCHBASE N1QL STATEMENTS

Author: Johan Larson, Senior Software Engineer, Couchbase R&D

Couchbase Server 5.5 includes the ability to keep a record of all N1QL actions taken by users. 

This is part of Couchbase’s more general audit functionality, introduced in 5.0. Auditing is only 

available in Enterprise edition.

Auditing lets the administrators of the system track who is accessing what data in the system. 

This is important when the data being stored is sensitive in some way, such as information about 

users. Couchbase Server 5.5 supports auditing of N1QL statements, and lets the administrator 

specify what types of statements (SELECTs? INSERTs?) should actually be audited.

It is important to understand what Couchbase Server 5.5 does not do. In particular, it does not 

allow record-level auditing. If an UPDATE statement is run and modifies five records, the audit 

record will include the whole statement that ran, including any parameters passed in, and it will 

say that five records were updated. It will not say what specific records were updated, or what 

their values were before or after the operation. Fundamentally, N1QL auditing audits statements, 

not records.

To configure audit, log in to the Couchbase Admin console. Navigate to the Security tab (on the 

side) and to the Audit tab (at the top of the screen). You should now see a screen like this:



94

This tab lets you configure auditing in general. The checkbox at the top indicates whether 

auditing should be done at all. “Target Log Directory” shows where to put the audit log records. 

The records appear in a file named “audit.log” in the target log directory. The next set of text 

boxes control log rotation by size and time interval.

Next are three dropdowns for various types of events, giving you fine control over what sorts 

of activities should be logged. Generally speaking, audit only what you must. The actual 

throughput cost of auditing depends on how much is audited, and the type of statements being 

audited. Ten percent throughput loss due to auditing is a reasonable off-the-cuff estimate, but 

you should definitely test the actual effect before rolling out a new system.

Finally, you can whitelist users in the “Ignore Events From These Users” box. These are users 

who are trusted so completely their actions do not need to be logged. For example, you may 

have an automated script that inserts new data. You trust this script completely. Creating 

a whitelisted user and having the script use that user’s credentials may be useful to avoid 

generating too many audit records.

Toggle the “N1QL Events” dropdown, to see the types of events available for N1QL.

There are two general types. First are events corresponding to N1QL statement types. For 

example, you can choose to audit all INSERT events, or all DELETE events. It might for example 

be reasonable to audit all events that modify data (INSERT/DELETE/UPDATE/UPSERT), but 

ignore statements that only retrieve data (SELECT).



95

Second are events corresponding to APIs exposed by the query engine. The N1QL query engine 

makes a number of APIs available, typically for monitoring the system. Each of these API 

endpoints is a separate event type. For example, there is one for the /admin/stats endpoint, and 

another for the /admin/ping endpoint. You have separate control over whether to audit accesses 

to these APIs.

Plain Query

We’ll start by auditing a simple SELECT statement.

Go to the “Buckets” page of the admin console, and create a bucket named “test” (no quotes). 

Memory quota 100 MB is fine for our purposes. Then go to the Query and create a primary index 

on the new bucket, to allow us to run N1QL queries on it.

create primary index on test

The go back to the audit configuration screen and select “Audit events & write them to a log” 

at the top, and the “SELECT statement” option under “N1QL Events”. Then press “Save” at the 

bottom of the screen.

Then run a query like this.

curl http://localhost:8093/query/service -d "statement=select * from test" -u Adminis-
trator:password

And let’s have a look at the audit log. The “Target Log Directory” field of the audit configuration 

screen has the directory where the audit log is stored. We’ll use the “tail” command to show the 

last few records of the audit log in this directory. On Mac systems, this command works:

tail ~/Library/Application\ Support/Couchbase/var/lib/couchbase/logs/audit.log

You should see several long lines of JSON text. Each line is one audit record. The last one is the 

record for the statement we sent. Reformatted, it looks like this:

1.	 {
2.	   "timestamp": "2018-03-14T05:53:34.976-07:00",
3.	   "real_userid": {
4.	     "source": "local",
5.	     "user": "Administrator"
6.	   },
7.	   "requestId": "d0554df3-fd99-40f5-b911-b3e4f0faf050",
8.	   "statement": "select * from test",
9.	   "isAdHoc": true,



96

10.	   "userAgent": "curl\/7.43.0",
11.	   "node": "127.0.0.1:8091",
12.	   "status": "success",
13.	   "metrics": {
14.	     "elapsedTime": "822.147\u00b5s",
15.	     "executionTime": "785.755\u00b5s",
16.	     "resultCount": 0,
17.	     "resultSize": 0
18.	   },
19.	   "id": 28672,
20.	   "name": "SELECT statement",
21.	   "description": "A N1QL SELECT statement was executed"
22.	 }

Let’s go through these field by field:

•	 “timestamp” shows the time from the query node.

•	 “real_userid” shows what user credential was supplied with the request. In this case it is 

the build-in user, “Administrator”.

•	 “requestId” is the UUID the query engine generates for every request. These IDs are unique 

with very high probability.

•	 “statement” is the actual statement we executed.

•	 “isAdHoc” is true in this case, showing that we sent an actual statement for execution, 

rather than running a prepared statement.

•	 “userAgent” is the User-Agent string from the original request. This is useful for 

distinguishing whether the request came from an SDK, or the CBQ shell, or the Query 

WorkBench.

•	 “node” is the IP address from which the request was received.

•	 “status” shows what happened to the request. In this case, it succeeded.

•	 “metrics” is a set of statistics about the result. This matches the metrics that were sent 

with the result of the original request.

•	 “id” is the event type ID. The audit records for all SELECT queries have the same id, 28672.

•	 “name” is the short name of the event type. This will be the same for all SELECT queries.

•	 “description” is the long name of the event type. This is also the same for all SELECT 

queries.

Note that the audit record provides for only one user, although the query engine allows for 

multiple credentials per request. This is by design. N1QL allowed multiple credentials for queries 

back when our credentials were per-bucket, and multiple credentials were therefore necessary 



97

for multi-bucket joins. But as of 5.0, with RBAC, multiple credentials are no longer necessary. 

We support them for backward compatibility, but the right way to handle such cases is to create 

users with credentials for multiple buckets, and use one such user for each query. If you insist 

on using multiple credentials for an audited query, the query will get audited, but there will be a 

separate audit record for every credential supplied. That’s a bit awkward, so we strongly suggest 

updating the permissions model to use RBAC permissions in such cases.

Prepare Statement

Now let’s consider a more sophisticated case, with a prepared statement. First, go back to 

the audit configuration screen, and turn on auditing of SELECT and PREPARE statements. 

Remember to hit “Save” at the bottom of the screen.

Now, we’ll first prepare a statement. Here we are preparing a SELECT statement, with name 

“example”. Note that the statement has an unnamed parameter.

curl http://localhost:8093/query/service -d "statement=prepare example as select * from 
test where one=?" -u Administrator:password

Then, we’ll execute the statement, supplying an argument for the statement. In this case, the 

statement will run, but return no results.

curl http://localhost:8093/query/service -d ‘prepared="example"&args=["bar"]’

Now let’s have a look at the audit log again.

tail ~/Library/Application\ Support/Couchbase/var/lib/couchbase/logs/audit.log

The log will show two events, one for the PREPARE, and one for the SELECT executed from the 

prepared statement:

1.	 {
2.	   "timestamp": "2018-03-14T06:27:39.884-07:00",
3.	   "real_userid": {
4.	     "source": "local",
5.	     "user": "Administrator"
6.	   },
7.	   "requestId": "9f76b8c2-ed9f-42f8-bc5c-31fb3326a661",
8.	   "statement": "prepare example as select * from test where one=?",
9.	   "isAdHoc": true,
10.	   "userAgent": "curl\/7.43.0",
11.	   "node": "127.0.0.1:8091",
12.	   "status": "success",
13.	   "metrics": {



98

14.	     "elapsedTime": "6.591126ms",
15.	     "executionTime": "6.515079ms",
16.	     "resultCount": 1,
17.	     "resultSize": 1279
18.	   },
19.	   "id": 28674,
20.	   "name": "PREPARE statement",
21.	   "description": "A N1QL PREPARE statement was executed"
22.	 }
23.	 {
24.	   "timestamp": "2018-03-14T06:27:52.992-07:00",
25.	   "real_userid": {
26.	     "source": "internal",
27.	     "user": "unknown"
28.	   },
29.	   "requestId": "56c5278b-5842-45a9-8549-5c7f52f109a7",
30.	   "statement": "",
31.	   "positionalArgs": [
32.	     "\"bar\""
33.	   ],
34.	   "isAdHoc": false,
35.	   "userAgent": "curl\/7.43.0",
36.	   "node": "127.0.0.1:8091",
37.	   "status": "success",
38.	   "metrics": {
39.	     "elapsedTime": "1.363373ms",
40.	     "executionTime": "1.334763ms",
41.	     "resultCount": 0,
42.	     "resultSize": 0
43.	   },
44.	   "id": 28672,
45.	   "name": "SELECT statement",
46.	   "description": "A N1QL SELECT statement was executed"
47.	 }

The fields of the audit records are similar to the earlier execution of a SELECT statements, but 

two fields bear notice:

•	 “positionalArgs” contains the argument supplied with the query.

•	 “isAdHoc” is in this case false, because the SELECT was executed from a prepared 

statement that was sent earlier.



99

API Request

Next, let’s try auditing one of the query engine APIs. Go to the audit configuration page, and 

turn on the “/admin/ping API request” event type. Don’t forget to save the configuration at the 

bottom of the page.

Now send a ping:

curl -v http://localhost:8093/admin/ping

Don’t expect much, the “{}” at the bottom is the entire result:

1.	 *   Trying ::1...
2.	 * Connected to localhost (::1) port 8093 (#0)
3.	 &gt; GET /admin/ping HTTP/1.1
4.	 &gt; Host: localhost:8093
5.	 &gt; User-Agent: curl/7.43.0
6.	 &gt; Accept: */*
7.	 &gt;
8.	 &lt; HTTP/1.1 200 OK
9.	 &lt; Date: Wed, 14 Mar 2018 13:54:24 GMT
10.	 &lt; Content-Length: 2
11.	 &lt; Content-Type: text/plain; charset=utf-8
12.	 &lt;
13.	 * Connection #0 to host localhost left intact
14.	 {}

Then let’s have a look at the audit log (again, using the location on Macs):

tail ~/Library/Application\ Support/Couchbase/var/lib/couchbase/logs/audit.log

The resulting audit log message, formatted, looks like this:

1.	 {
2.	   "timestamp": "2018-03-14T06:54:24.887-07:00",
3.	   "real_userid": {
4.	     "source": "internal",
5.	     "user": "unknown"
6.	   },
7.	   "httpMethod": "GET",
8.	   "httpResultCode": 200,
9.	   "errorMessage": "",
10.	   "id": 28697,
11.	   "name": "/admin/ping API request",
12.	   "description": "An HTTP request was made to the API at /admin/ping."
13.	 }



100

Here “timestamp” and “real_userid” fields work as before, in the SELECT example. “httpMethod” 

is the type of HTTP request. “httpResultCode” and “errorMessage” indicate what happened with 

the request. “Id”, “name” and “description” are specific to the audit event; these fields will be 

identical for all audit records created for /admin/ping events.

Forward Filtering

(This is an advanced topic. You don’t need to know the material in this section to use N1QL 

auditing effectively. But a look under the hood may be of interest to advanced users.)

Auditing is controlled in each server by an executable called the audit demon. The audit demon 

creates all records in the audit log. In 5.0, the audit demon was responsible for all filtering of 

events; clients sent records for all auditable events, and the audit demon would create audit 

records in the log, or not, depending on the filtering configuration. Unfortunately, this would be 

very inefficient when auditing is highly filtered an clients are doing a lot of potentially auditable 

work. A client such as the query engine might generate millions of records only to have them 

thrown away by the audit demon when they arrived.

To alleviate this problem, in 5.5 Couchbase supports forward filtering. The query engine is aware 

of the current audit configuration, and sends only the currently audited records to the audit 

demon. It also sends a special audit record to indicate that it has received the new configuration 

and is aware of it.



101

This dual filtering is why you may see two types of configuration records in the audit log. A 

record like this indicates the audit demon has received a new configuration:

1.	 {"rotate_size":20971520,"log_path": 
"/Users/johanlarson/Library/Application Support/Couchbase/var/lib/couchbase/logs 
","rotate_interval":86400,

2.	 "disabled_userids":[],"auditd_enabled":true,
3.	 "disabled":[20485,20488,20489,20490,20491,28673,28675,28676,28677,28678, 

28679,28680,28681,28682,
4.	 28683,28684,28685,28686,28687,28688,28689,28690,28691,28692,28693,28694, 

28695,28697,28698,28699,
5.	 28700,28701,28702,32770,32771,32772,32780],
6.	 "enabled:[20480,20482,20483,28672,28674,32768,32769,32773,32774,32775,32776, 

32777,32778,32779,32781,32782],
7.	 "real_userid":{"source":"ns_server","user":"Administrator"},"sessionid": 

"8b3d16bffa8444ce596b64a78c0185f7",
8.	 "remote":{"ip":"127.0.0.1","port":52153},
9.	 "timestamp":"2018-03-14T06:25:30.370-07:00","id":8240,"name":"configured audit 

daemon",
10.	 "description":"loaded configuration file for audit daemon"}

And a record like this indicates that the query engine has received a new configuration:

1.	 {"timestamp":"2018-03-14T06:25:30.427-07:00",
2.	 "real_userid":{"source":"","user":""},"uuid":"26571424","id":28703,
3.	 "name":"N1QL configuration","description":"States that N1QL is using audit 

configuration with specified uuid"}

Note the UUID that identifies the configuration. You can get this UUID from the configuration, 

like this:

curl http://localhost:8091/pools/default -u Administrator:password

Look for the “auditUid” field.

You can get the complete audit configuration like this:

curl http://localhost:8091/settings/audit -u Administrator:password

1.	  {"disabled":[20485,20488,20489,20490,20491,28673,28675,28676,28677,28678,
2.	 28679,28680,28681,28682,28683,28684,28685,28686,28687,28688,28689,
3.	 28690,28691,28692,28693,28694,28695,28698,28699,28700,28701,28702,
4.	 32770,32771,32772,32780],
5.	 "uid":"18635804","auditdEnabled":true,"disabledUsers":[],
6.	 "logPath":"/Users/johanlarson/Library/Application Support/Couchbase/var/lib/

couchbase/logs",
7.	 "rotateInterval":86400,"rotateSize":20971520}



102

Loading the Audit Log

Couchbase Server currently only supports one destination for audit records: a file on the server. 

But sometimes it would be useful to get the audit records into the database itself. This is not 

difficult, since the audit records are JSON. But loading the log does require use of a utility, 

cbimport.

Assuming you have the audit log created in the standard location on a Mac, and you have 

created the “test” bucket, this incantation loads the audit.log file into the “test” bucket:

/Applications/Couchbase\ Server.app/Contents/Resources/couchbase-core/bin/cbimport json 
-c http://localhost:8091 -u Administrator -p password -b test -g "#UUID#" -d file:///
Users/johanlarson/Library/Application\ Support/Couchbase/var/lib/couchbase/logs/audit.
log -f lines

That’s rather a lot to take it, and you would need slightly different variations on other systems, 

so let’s go through this step by step.

•	 /Applications/Couchbase\ Server.app/Contents/Resources/couchbase-core/bin/

cbimport is the full path to the cbimport command on a Mac. For other systems, the 

utilities are located elsewhere. See this document.

•	 -c http://localhost:8091 is the URL of the server where Couchbase is running

•	 -u Administrator -p password is the username and password of the user we are uploading 

the data as (in this case the default administrator.)

•	 -b test is the name of the bucket we are uploading the data into.

•	 -g “#UUID#” is the type of key to generate for each document entered into the bucket. 

In this case, we are using a UUID, but there are many other options. Check the cbimport 

documentation for more information.

•	 -d file:///Users/johanlarson/Library/Application\ Support/Couchbase/var/lib/

couchbase/logs/audit.log is a file URL pointing to the location of the audit log. Note 

the three forward slashes and the backslash to allow a space in the URL path. The logs, 

including the audit log, are placed in standard directories that vary from system to system. 

See this document for more information.

Once the audit records are in the system, you can query them just like any other data. Go to the 

Query WorkBench to try it out.



103

This query shows how many audit records you have:

select count(*) as num from test

And this query breaks down the count by audit record type:

select name, count(*) as num from test group by name

Summary

•	 Requests to query engine are auditable as of 5.5 EE.

•	 Auditing in general supports filtering by event type and user whitelisting.

•	 Requests are marked as events by query type and API endpoint.

•	 Additional documentation about auditing of N1QL statements is available here.



104



X.509 for Query



106



107

N1QL SUPPORT FOR X.509

Authors: Isha Kandaswamy, Senior Software Engineer, Couchbase R&D
Ajit Yagaty, Senior Software Engineer, Couchbase R&D

Couchbase Server 5.5 supports X.509 certificates to encrypt client server communications 

within a cluster. This new authentication method adds to the list of authentication methods 

Couchbase already supports today (SSL/TLS, password based built-in authentication for data 

buckets, and LDAP authentication for administrators)

With SSL authentication, a server certificate is exchanged between the server and the client 

which the client uses to verify the identity of the server. This starts with a client and server hello 

where the protocol version, session ID, SSL version number, Cipher settings and other session 

specific data is exchanged with the server. Once these values have been established, then the 

authentication step happens. Here the Client authenticates the server using the certificate sent 

by the server. The server in turn requests the client certificate which is used to identify the client. 

The server then uses its private key to decrypt the certificate. They agree to use specific ciphers. 

With this all future messages between client and server will be encrypted. Certificates are 

configured in .pem format. 



108

X.509 certificate is the official standard for public key certificates and on which SSL/TLS relies. 

To enable SSL, a X.509 certificate needs to be installed on Couchbase Server.

The certificate authority (CA) issues digital certificates which certifies the ownership of a  

public key by the named subject of the certificate. There are 2 types of CA’s, root CA and 

intermediate CA. 

The root CA is the topmost CA. All certificates immediately below the root certificate inherit 

its trustworthiness, and can be used to secure systems. The root CA issues certificates to the 

intermediate CA. The intermediate CA generates intermediate certificates used to sign client 

certificates or the cluster certificate. This represents an n tier hierarchy (depending on how many 

intermediates there are). 

Root CA signs-> Intermediate CA signs -> Cluster CA

In order for a certificate to be trusted, and often for a secure connection to be established at all, 

that certificate must have been issued by a CA that is included in the trusted store of the device 

that is connecting. Also the clients need to have a valid certificate signed by the same root CA.

For more detailed information on configuring X.509 please refer to the documentation -  

https://developer.couchbase.com/documentation/server/current/security/security-

x509certsintro.html. 

Certificate needs to be manually generated in a .pem format, signed by an intermediate 

certificate (ie CN=<host-name>), and then signed with root certificate and finally loaded 

into Couchbase. Service certificates (client-certs) are signed by the same chain of trust that 

terminate at root CA authority as Server certificates. 

Once certificates are refreshed and the SSL config has been updated (post enabling certificate 

auth), any new connections coming into the server will make use of the new config. However 

existing connections will not be affected. 	

Deeper dive into supporting Client Certificate Authorization 

There are three states in which the authorization operation can be performed - disable, enable 

and mandatory. When disabled, no client authorization is performed. This is the default mode. 

If the client presents a certificate and client authorization has been enabled, then it will be 

used and if the certificate cannot be authenticated then access will be denied. However, if the 

client does not have to present a certificate and if none is presented then the certificate based 

authentication will be bypassed. If the system is mandated to have a certificate (status setting 

as mandatory) then the client needs to present a valid certificate in order to gain access to 

Couchbase buckets and Admin UI. 

https://developer.couchbase.com/documentation/server/current/security/security-x509certsintro.html
https://developer.couchbase.com/documentation/server/current/security/security-x509certsintro.html


109

Another setting that the Couchbase server uses is prefixes. Prefixes are used to extract the user 

name from the client certificate. A prefix entry is an array of {path,prefix,delimiter} triples. The 

user can specify up to 10 such triplets. 

The following table explains the intent of each field in a triple:

Field Description

path This denotes the field in the X.509 certificate that will be used to extract the 

username from. If the State setting is either enable or mandatory then this field 

must be set by the user. It can take the following values:

1.	 subject.cn: Refers to the commonName field in subject section of the 

certificate.

2.	san.uri: Refers to the URI field in Subject Alternate Names section of the 

certificate.

3.	san.email: Refers to the email field in Subject Alternate Names section of the 

certificate.

4.	san.dnsname: Refers to the dns field in Subject Alternate Names section of 

the certificate.

prefix This is an optional field. This denotes the prefix to be ignored from the username 

read from the Path. If this field is specified and the username doesn’t have the 

prefix then we move on to the next triple. If it’s empty then we use the entire value 

found in Path.

delimiter This is an optional field. Multiple characters can be configured as the delimiters. 

After the prefix removal, we pick the characters from the value until a delimiter 

is encountered and that would be returned as the username. If there is no match 

against any of delimiters then we return the entire string as the username.

Each triple is processed until a match is found. A “match” is when we find a name in the client 

certificate that satisfies path and prefix. Delimiter does not count for matches. If the delimiter  

is not found we take up to the end of the string.



110

Sample example of the client cert authorization settings - 

{
  "state" : "enable",
  "prefixes" : [
    { "path" : "subject.cn", "prefix" : "www.cb-", "delimiter" : "." },
    { "path" : "san.dnsname", "prefix" : "us.", "delimiter" : "." },
    { "path" : "san.uri", "prefix" : "www.", "delimiter" : "." }
  ]
}

X.509 Client certificate authorization behavior 

Support for authorization based on client certificates in ns server has also been added into 

5.5. The client certificate will be generated with the username encoded into one of the fields in 

the certificate. The server will receive an HTTP request, and check for the appropriate request 

header to assign basic token authentication. If the client certificate authorization status is set 

to enable or mandatory, the server tries to get the certificate from the request object. If client 

certificate is missing and if authorization state is enable then server falls back to regular basic-

auth. But if the client cert authorization state is mandatory then server fail the request. 

Once the server gets the client certificate from the request, then the prefix from the config 

is used to extract the username. The server reads the value of the field from the certificate 

identified by path and then uses the prefix and delimiter settings to extract the username from 

the value read. Once the username extraction is successful then that is used as a local identity 

and the server checks to see if the identity has the required permissions to process request. If 

not, then the request fails.

If the client certificate presented is incorrect then the request will be rejected at the TLS level. 

Typically the error string returned will be “bad certificate” and TLS layer provides an alert 

number associated with it. If the client certificate is correct (TLS authentication works) but the 

user identity encoded within the certificate doesn’t match any of the configured prefixes or if 

the username extracted doesn’t match any of the configured users then an HTTP Error code 401 

will be returned.

This is why the prefixes need to be set correctly. When the prefixes are checked by the server, 

the prefix portion of the value is discarded and the substring found until the delimiter is found 

in the value is returned as the username. If both are undefined then we return the value as the 

username. If prefix is defined but it’s not found in the value then we move on to the next triple. 

Some of the fields (specifically pertaining to Subject Alternate Names) may have multiple values 

defined. In such a case, we pick the first value that matches the prefix and delimiter.

If none of the triples match then the request will be failed. 



111

Running a query with Client Certificate Authorization 

To setup client cert authorization for Couchbase server, we first need to enable TLS on the 

server.

Then we need to generate client certificates. (Please refer to Couchbase Server 5.1 

documentation on X.509 - https://developer.couchbase.com/documentation/server/current/

security/security-x509certsintro.html ) So create the client, client/int, client/client directories 

under the SSLCA folder. Once done, generate an intermediate certificate. This intermediate 

certificate will be used to sign the client certificate. This intermediate certificate will in turn be 

signed by the root certificate (root/ca.pem). Then the client certificate is generated using an 

openSSL configuration file. (See examples here- https://www.openssl.org/docs/man1.1.1/man1/

req.html)

Once this step is completed, we need to add a user in Couchbase Server (whose username 

has been encoded in the client certificate), assign required permissions to this user and set the 

client cert authorization settings. This would be used to extract the username from the client 

certificate. (See above for an example)

Execute the following REST API to config the client cert auth.

curl -X POST -u Administrator:password -d@client_cert_auth.json  
http://localhost:8091/settings/clientCertAuth

Each request will take 3 file paths typically deployed to the local node machines - 

1.	 Client key (let’s call it client.key) 

2.	 Root CA certificate (let’s call it ca.pem) 

3.	 Certificate chain file based on the supported CA hierarchies (chain.pem)

A sample N1QL query that uses client-cert authorization -

curl --cacert ./root/ca.pem --cert-type PEM --key-type PEM 
--cert ./client/client/chain.pem --key ./client/client/client.key  
https://localhost:18093/query/service -d "statement=select * from  
system:keyspaces"

https://developer.couchbase.com/documentation/server/current/security/security-x509certsintro.html
https://developer.couchbase.com/documentation/server/current/security/security-x509certsintro.html
https://www.openssl.org/docs/man1.1.1/man1/req.html
https://www.openssl.org/docs/man1.1.1/man1/req.html
https://localhost:18093/query/service


114

query.couchbase.com

Enabling Engagement
COUCHBASE N1QL




