





Getting Started with Membase and C#







    Copyright  2010-2013 Couchbase, Inc. Contact
    copyright@couchbase.com.
  


    For documentation license information, see
    Section4.1, Documentation License. For all license
    information, see Section4, Licenses.
  








Abstract



Note.
    The following document is still in production, and is not considered
    complete or exhaustive.
  


  
Last document update
: 07 Mar 2013 00:06;
  
Document built
: 06 Sep 2013 02:04.



Documentation Availability and Formats.
    This documentation is available
    online:
    HTML Online

     . For other documentation from
    Couchbase, see Couchbase
    Documentation Library
  


  
Contact:

  editors@couchbase.com
  or

  
couchbase.com

  

















1.Introduction








      This article assumes you have already downloaded and set up the
      latest Membase Server and a small cluster of machines. Now you
      want to get working with C# and immediately start writing to your
      database. This article will walk you through the following:
    



	

          Downloading and installing the Enyim Memcached Client, and
          Membase client library.
        



	

          Setting up a command-line driven C# application in Visual
          Studio 2010, and referencing the Enyim client library.
        



	

          Writing a simple program to demonstrate connecting to Membase
          and saving some data in the database.
        



	

          Exploring the Enyim client library's API so that you are
          better equipped to begin to write more complex applications.
        

















2.Downloading the Membase Client Library








      The Enyim client library is a .NET library that can be downloaded
      from the Couchbase Client Library language center
      http://memcached.enyim.com.
      It is shared with a lower-level library implements the memcached
      protocol (which is also the low-level protocol supported by
      Membase), along with more functionality through the enhancements
      that Membase provides.
    









3.Hello C# Membase








      The easiest way to create and compile C# programs is by using
      Visual Studio 2010. Let's go into Visual Studio and create a
      HelloMembase project by completing the following steps (see Figure
      2):
    



	

          Click on File > New > Project
        



	

          Choose: Visual C# > Windows > Console Application as
          your template
        



	

          Give the project the name HelloMembase
        



	

          Click OK to create the new project
        




Figure1.Figure 1: Solution Explorer for HelloMembase solution.




[image: Solution Explorer for HelloMembase solution]








	

          Right click the HelloMembase project in the solution explorer
          and choose Add | New Folder, and name the new folder Libraries
        



	

          Drag and drop all of the .dll, .pdb, and .xml files from the
          .NET Client Library zip-file you downloaded into the Libraries
          folder
        



	

          Right click on References and choose Add Reference
        



	

          Click on the Browse tab and then find the Libraries folder and
          choose the Enyim.Caching.dll and the Membase.dll
        



	

          Since the project is not a web application, we need to
          reconfigure it so that a few of the
          
System.Web
 assemblies are referenced. To
          do this, we also need to switch to the full .NET 4.0 profile
          instead of the client profile. Start by right clicking the
          HelloMembase project and choosing Properties and in the
          'Target Framework' drop-down list, choose '.NET Framework 4'.
        



	

          Next, add another reference from the .NET tab of the Add
          Reference dialog, choose "System.Web (Version 4.0.0.0)".
        








      After you have done these steps, your solution should look like
      that shown in Figure 2.
    




Figure2.Figure 2: Solution with added references.




[image: Solution with added references]







      Next you will need to configure the client library to talk with
      Membase. This is most easily done by editing the App.config file
      to add a configuration section. You can also do your configuration
      in code, but the benefits of adding this to the .config file is
      that you can change it later without having to recompile. Also,
      when you start writing web applications using ASP.NET you can add
      the same configuration to the Web.config file.
    


      Listing 1: App.config file
    

<?xml version="1.0"?>
<configuration>

  <configSections>
    <section name="membase" type="Membase.Configuration.MembaseClientSection, Membase"/>
  </configSections>

  <membase>
    <servers bucket="private" bucketPassword="private">
      <add uri="http://10.0.0.33:8091/pools/default"/>
    </servers>
  </membase>

  <startup>
    <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
  </startup>
</configuration>


      You would change the uri to point at your server by replacing
      10.0.0.33 with the IP address or hostname of your Membase server
      machine. Be sure you set your bucket name and password. You can
      also set the connection to use the default bucket, by setting the
      bucket attribute to default and leaving the bucketPassword
      attribute empty. In this case we have configured the server with a
      bucket named "private" and with a password called "private". Feel
      free to change these to whatever you have configured on your
      server.
    


      Now you are ready to begin your first C# application to talk with
      your Membase server. Enter the code in Listing 2 into Program.cs:
    


      Listing 2: Simple C# Application
    

using System;
using Enyim.Caching.Memcached;
using Membase;

namespace HelloMembase
{
    class Program
    {
        static void Main(string[] args)
        {
            using (var client = new MembaseClient())
            {
                String spoon = null;

                if ((spoon = client.Get<string>("Spoon")) == null)
                {
                    Console.WriteLine("There is no spoon!");
                    client.Store(StoreMode.Set,
                                 "Spoon",
                                 "Hello, Membase!",
                                 TimeSpan.FromMinutes(1));
                }
                else
                {
                    Console.WriteLine(spoon);
                }
            }
        }
    }
}


      If you run this program without debugging, by hitting Ctrl-F5, you
      will initially see the following output:
    

There is no spoon!
Press any key to continue


      If you then press Ctrl-F5 again, you will see some different
      output:
    

Hello, Membase!
Press any key to continue


      The code creates an instance of a MembaseClient
      in a using block so that it will be properly disposed of before
      the program exits. Creation of the
      MembaseClient instance is an expensive
      operation, and you would not want to create an instance every time
      you need one. Usually this would be done once in an application,
      and stored for when it is needed.
    


      Next the code makes a call to the generic
      client.Get>T> method. If you know that
      you've stored a string in a particular database key this method
      allows you to return the string without having to perform a
      typecast. If you get the type wrong, a
      ClassCastException will be thrown, so be
      careful. Any type marked with the [Serializable] attribute can be
      stored into Membase.
    


      Press Ctrl-F5 again. You'll notice that there is no spoon. Where
      did it go? If you notice, the client.Store()
      method was given a TimeSpan parameter
      indicating the expiry time of the key in the database. After that
      amount of time the key will cease to exist and its value will be
      forgotten. This is convenient to store information that has a
      short lifetime, such as a user session, or other data that is
      expensive to calculate, but is only valid for a short period of
      time like the daily bus schedule for a given bus stop, or the
      number of people that have visited a particular web page since
      midnight.
    


      The Enyim Membase client library also has a very useful way of
      keeping keys from expiring without having to write new data into
      them, called the Touch() method. In order to
      use this, you must have a very recent Membase server (currently
      version 1.7 or higher) that supports the Touch operation. If your
      server is new enough, try adding the following line in bold to the
      else block:
    

else
                {
                    Console.WriteLine(spoon);
                    client.Touch("Spoon", TimeSpan.FromMinutes(1));
                }


      Now you will be able to press Ctrl-F5 every 30 seconds for the
      rest of your life if you wanted to. The expiry time of the Spoon
      value will be extended every time the application is run, keeping
      it nice and fresh. If you stop for more than one minute Spoon will
      expire again.
    






3.1.Membase API overview








        The Enyim Membase client library has many API methods that you
        can use to implement whatever you desire. The following tables
        outline some API categories, the methods that are available, and
        a short description of what those methods do.
      






3.1.1.Memcached methods








          These methods allow all of the operations defined for the
          memcached protocol, which is implemented in the Enyim client
          library inside the
          Enyim.Caching.MemcachedClient class. A few
          of these methods have generic versions that allow automatic
          type casting of serializable objects to be retrieved. Many of
          these methods can also return a Boolean value indicating
          whether the operation succeeded or failed.
        









	
Append

	Append some bytes to the end of a key.



	
Decrement

	Decrement a key and return the value.



	
FlushAll

	Flush all data on all servers for the connected bucket.



	
Get

	Get the value for a key.



	
Increment

	Increment the value of a key.



	
Prepend

	Prepend some bytes to the start of a key.



	
Remove

	Removes a key from the database.



	
Stats

	Return statistics about a key, or about the servers in the cluster.



	
Store

	Stores a value for a key.



	
TryGet

	Tries to get a value, and returns a Boolean if the value was
                  successfully retrieved.














3.1.2.Check And Set








          The MemcachedClient has a number of methods
          that allow a Check and Set operation to be performed on keys
          in the database. Check and Set operations (CAS) are a way to
          prevent data loss in a distributed database without heavy
          locks or transactions. Before you write data into the database
          you can obtain the current cas value, which
          is effectively like a version number for the data in the
          database. When you write your new data into the database you
          pass along the version you think the data is supposed to have.
          If, by the time the write happens, the value is no longer
          valid your code will be told that your write failed. You will
          then be able to take corrective action such as reading the new
          value, its cas, and retrying your operation.
        









	
Cas

	Perform a Check And Set operation.



	
Decrement

	Some of the Decrement overloads support returning a
                  CasResult.



	
GetWithCas

	Perform a Get and also return a CasResult.



	
Increment

	Some Increment overloads support passing back a Cas to check for whether
                  the operation succeeded.



	
TryGetWithCas

	Returns a Boolean so your code knows if the value exists or not, and
                  returns a CasResult if it succeeds.














3.1.3.Specialized Membase Methods








          The Enyim library includes the
          MembaseClient class, which is a subclass of
          the MemcachedClient class. It has a set of
          methods that provide very powerful ways to interact with data
          and extent the expiry time concurrently. You will be able to
          use all of these methods (get, touch and CAS equivalents) on
          both both Membase and Memcached buckets in Membase 1.7, except
          for the Sync operation. Sync is only supported on Membase
          buckets.
        









	
Get

	A special form of Get, sometimes referred to as Get and Touch, which a
                  returns the value but allows the expiry time to be
                  reset.



	
GetWithCas

	Get a value, its Cas, and also reset the expiry, all at once.



	
Sync

	A very new operation that allows you to wait for data in the database to
                  change in specific ways. Allows you to know when data
                  has been persisted, replicated, or mutated. Remember
                  this operation can only be performed on Membase
                  buckets.



	
Touch

	Reset a keys expiry date without getting its value.



	
TryGet

	Try to get a value, a Boolean indicates success, reset the expiry, all
                  at once.



	
TryGetWithCas

	Swiss army knife. Gets a Boolean indicating if the operation succeeded,
                  gets a CasResult and also resets
                  the expiry time of value.
















3.2.Conclusion








        We hope you have enjoyed this very brief introduction to using
        the Enyim client library to connect your C# programs to your
        Membase database. We would encourage you to spend some time
        working though the Tutorial application as well.
      











4.Licenses








    This documentation and associated software is subject to the
    following licenses.
  






4.1.Documentation License








    This documentation in any form, software or printed matter, contains
    proprietary information that is the exclusive property of Couchbase.
    Your access to and use of this material is subject to the terms and
    conditions of your Couchbase Software License and Service Agreement,
    which has been executed and with which you agree to comply. This
    document and information contained herein may not be disclosed,
    copied, reproduced, or distributed to anyone outside Couchbase
    without prior written consent of Couchbase or as specifically
    provided below. This document is not part of your license agreement
    nor can it be incorporated into any contractual agreement with
    Couchbase or its subsidiaries or affiliates.
  


    Use of this documentation is subject to the following terms:
  


    You may create a printed copy of this documentation solely for your
    own personal use. Conversion to other formats is allowed as long as
    the actual content is not altered or edited in any way. You shall
    not publish or distribute this documentation in any form or on any
    media, except if you distribute the documentation in a manner
    similar to how Couchbase disseminates it (that is, electronically
    for download on a Web site with the software) or on a CD-ROM or
    similar medium, provided however that the documentation is
    disseminated together with the software on the same medium. Any
    other use, such as any dissemination of printed copies or use of
    this documentation, in whole or in part, in another publication,
    requires the prior written consent from an authorized representative
    of Couchbase. Couchbase and/or its affiliates reserve any and all
    rights to this documentation not expressly granted above.
  


    This documentation may provide access to or information on content,
    products, and services from third parties. Couchbase Inc. and its
    affiliates are not responsible for and expressly disclaim all
    warranties of any kind with respect to third-party content,
    products, and services. Couchbase Inc. and its affiliates will not
    be responsible for any loss, costs, or damages incurred due to your
    access to or use of third-party content, products, or services.
  


    The information contained herein is subject to change without notice
    and is not warranted to be error-free. If you find any errors,
    please report them to us in writing.
  





OEBPS/images/epub-logo.png
Java





OEBPS/images/fig3-solution-with-references.png
|24 Solution 'HelloMembase' (1 project).
4" @ HelloMembase
» (2 Propertes
4 Ly References
- Enyim.Caching
-3 Membsze
@ Microsoft Csharp.
@ System
@ System.Core
-3 SystemDats
-3 System.Data. DataSetbrtensions
-3 Systemeb
@ Systemml
-3 SystemXmLing
3 sppiconfiy
) Program.cs






OEBPS/images/fig2-hello-membase-solution.png
S
Ela@|x3
123 Solution "HelloMembase' (1 project)
4 (3 HelloMembase
s & Properties
b & References
Libraries
] Program.cs





OEBPS/images/couchbase_logo.jpg
CoucHBase





