

TO COUCHBASE AND N1QL
CUSTOMER AND COMMUNITY

33

FOREWORD TO FIRST EDITION

We are excited to present this Book to you, our N1QL customers, users and readers. We started

developing N1QL way back in 2013, when we realized that people were managing more of their

data in JSON, but in doing so, they were having to give up the benefits of SQL querying. We

appreciate both SQL and JSON, and we thought users should have the benefits of both.

After a few developer previews and much helpful feedback from early users and customers,

N1QL was released in 2015. As of this writing in March 2017, N1QL is being used by over 100

enterprise customers, and many times that number of community users and developers. N1QL

has steadily grown in sophistication, functionality, and performance.

This book is a compilation of some of our DZone articles through 2016. We have found DZone

to be a great medium for N1QL blogs and articles. In addition to the initial reading, the articles

serve as a continuous resource for questions, learning, reference, and discussion. A special

thanks to our Couchbase and community colleagues, including those who contributed articles

after 2016.

We hope you enjoy this eBook. If you have feedback or suggestions for future topics, please

share them on our forums, on Stack Overflow, and of course, on DZone.

Gerald Sangudi

For Team N1QL

Mountain View, California

March, 14th, 2017

4

5

FOREWORD FOR THE SECOND EDITION

Two years and two weeks ago, on a crisp fall day at Wall Street in New York, we launched N1QL

in Couchbase 4.0. Even before the launch, we had customers using pre-release N1QL because it

solved a critical business problem: manipulate the JSON data as a set, just like SQL. In the two

years since, the customers, community and the product have grown rapidly. We have hundreds

of customers using it in production. Customers have continued to innovate building modern

scalable applications for CRM, user profile, entitlement, inventory, gaming and more. Community

participation and interaction on the Couchbase N1QL forum have increased in quality, quantity,

and complexity. We love all the interactions and tough questions. Customers and customer jobs

inspire us to innovate and do more.

Since the initial release, we’ve learned from use cases and enhanced query language, indexing,

performance, and capabilities in all of the releases. Novel indexing technology based on lock-

free skip list has improved the performance by orders of magnitude. Generalized array indexing

is the best in the industry. Pagination query performance has given customers both agility and

scale. We’re delighted to release the second edition of the N1QL book with updates to query

optimization, monitoring, profiling, security, and tooling.

Keshav Murthy

For the Couchbase N1QL and Indexing Team

October, 20th, 2017

Mountain View, California

6

7

AUTHORS

Gerald Sangudi
Gerald Sangudi lead the Query Engineering team at Couchbase, which is created the N1QL query

language and engine for the Couchbase distributed document database. Gerald has been building

enterprise software for over 20 years. He started out building data mining and visualization

software at Silicon Graphics, and went on to build more software at VMware, Healtheon/WebMD,

Yahoo!, Loopt, and 23andMe. He studied Computer Science and Engineering at MIT, and holds

several patents. He received President’s Club award at Couchbase.

Sitaram Vemulapalli
Sitaram Vemulapalli is a Principal Software Engineer at Couchbase. Prior to Couchbase, he

served as an architect for IBM Informix SQL and has more than 20 years experience in database

design and development. Sitaram holds a master’s degree in system science and automation

from the Indian Institute of Science, India.

Marco Greco
Marco Greco is a London-based Senior Software Engineer for Couchbase, with over 30 years

experience in the IT industry. Prior to Couchbase, he served as CTO in Italy’s largest radiation

therapy practice, designing and managing the development of all of their business-critical

treatment facilities as well as developing in-house application suites for nuclear medicine image

acquisition and manipulation, full radioimmunoassay lab automation, and clinical research

management and resource planning for the oncological sciences. He later spent the best part of

two decades holding several senior technical roles at IBM and has vast experience on aspects of

the Informix code, from parser to language manager, SQL caches, query execution, general and

OS libraries, global language support, and integration of the SQL layer of the Informix database

engine. Marco has several patents filed in both the U.K. and U.S. and earned a bachelor’s degree

in electronics and physics from King’s College London.

Johan Larson
Johan Larson has been a software developer since 2001. He studied databases in graduate

school, worked with them from the user side for a couple of now-forgotten startups in the Bay

area, and has built server-side systems for companies such as Open Text, Informatica, and

Google. He has been a Senior Software Engineer in the Couchbase N1QL team since 2015. He

lives in Toronto, Canada.

8

9

Isha Kandaswamy
Isha Kandaswamy is a Software Engineer in the query group at Couchbase. Prior to Couchbase,

she worked in the query optimization group at Teradata. Isha earned her master’s degree in

computer science and robotics from Johns Hopkins University.

Prasad Varakur
Prasad is the principal product manager at Couchbase, with years of experience developing

databases, storage, and distributed systems at Novell, Sybase, EMC and Huawei. Before that,

he was Director of Strategy & Sr. Architect at Huawei, building newSQL, cloud, and big-data

technologies. Prasad holds multiple patents, has contributed foundational works of Parametric

Query Optimization, and has Master’s degree in computer science from IIT Kanpur.

Eben Haber
Eben is an engineer and a human-computer interaction practitioner at Couchbase, working to

make Couchbase more comprehensible and manageable for its users. Highlights of his work

at Couchbase include developing schema inferencing and the web-based query workbench

with flexible visualization of data and query plans. Before Couchbase, he spent 12 years at the

IBM Almaden Research Center where, with his colleagues, he wrote the definitive book on IT

sysadmins, their tools, and work practices (“Taming Information Technology”). Eben has an

AB in Computer Science and Physics, and an MS and PhD in Computer Science, concentrating

in User Interfaces for Databases.

Manuel Hurtado
Manuel is a Couchbase Solutions Engineer, with more than 15 years of experience in Oracle

and BEA Systems, helping companies to architect their systems, as developer, consultant,

trainer and project manager. Still learning day by day how people use technology to succeed.

Tai Tran
Tai is the vice president of engineering at Couchbase. Previously, he has led R&D at Oracle,

LucidEra, Siebel to develop innovative database software. He also developed indexing and

storage technologies for Oracle database. He has masters degree in Computer Science from

UK and holds several patents.

Keshav Murthy
Keshav is the Senior Director of R&D for Query at Couchbase. Previously he was Senior product

manager at MapR, Senior Architect for IBM Informix SQL & NoSQL with more than 20 years

experience in database R&D. Keshav has lead development of SQL and NoSQL products & features

in Sybase, Illustra and Informix databases. He received President’s Club award at Couchbase

and two Outstanding Technical Achievement Awards at IBM. Keshav holds a Bachelor degree in

Computer Science and Engineering from the University of Mysore, India and holds seven US patents.

10

11

TABLE OF CONTENTS

SECTION: ENTERPRISE JOBS TO BE DONE	

Enterprises on Getting the Jobs Done 	

Gerald Sangudi • Keshav Murthy... 17

SECTION: QUERY ON JSON	

Keep Calm and JSON

Keshav Murthy..23

Keep Calm and Query JSON	

Keshav Murthy..29

NEST and UNNEST: Normalizing and Denormalizing JSON on the Fly	

Johan Larson..35

Working with Schema in a Schema-Flexible Datastore	

Eben Haber...61

SECTION: INDEXING	

Indexing JSON in Couchbase	

Keshav Murthy..77

Designing Index For Query In Couchbase N1QL	

Sitaram Vemulapalli...89

JOIN Faster With Couchbase Index JOINs	

Keshav Murthy.. 103

A Couchbase Index Technique for LIKE Predicates With Wildcard	

Tai Tran.. 113

SECTION: OPTIMIZATION	

A Deep Dive Into Couchbase N1QL Query Optimization	

Keshav Murthy • Sitaram Vemulapalli.. 119

Understanding Index Scans in Couchbase N1QL Query	

Sitaram Vemulapalli... 135

12

COUNT and GROUP Faster With N1QL	

Keshav Murthy.. 165

More Than LIKE: Efficient JSON Searching With N1QL	

Keshav Murthy.. 175

SPLIT and CONQUER: Efficient String Search With N1QL in Couchbase	

Keshav Murthy.. 195

Performance Ingredients for NoSQL: Intersect Scans in N1QL	

Prasad Varakur..203

The Latest Performance Tricks in N1QL	

Prasad Varakur..217

Apps in N1QL Land: Magic With Pretty, Suffix, Update, and More	

Prasad Varakur.. 229

SECTION: USE CASES	

SQL on Twitter: Analysis Made Easy Using N1QL	

Keshav Murthy... 245	

What’s in a New York Name? Unlock data.gov Using N1QL	

Keshav Murthy... 255

How to Speed Up Spatial Search in Couchbase N1QL	

Keshav Murthy... 269

SECTION: MONITORING AND TOOLING	

Mastering the Couchbase N1QL Shell: Connection Management and Security	

Isha Kandaswamy.. 287

Mastering the Couchbase N1QL Shell: Interacting with the N1QL Rest API and executing

Prepared Statements 	

Isha Kandaswamy.. 295

Mastering the Couchbase N1QL Shell: Scripting	

Isha Kandaswamy... 317

Query Performance Monitoring Made Easy With Couchbase N1QL	

Marco Greco... 323

13

Optimize N1QL Performance Using Request Profiling	

Marco Greco.. 341

Securing N1QL Access Using Role-Based Access Control	

Johan Larson.. 361

SECTION: MIGRATION AND COMPETITION	

ELT Processing With Couchbase and N1QL	

Manuel Hurtado... 381

Migrate From Any Relational Engine to Couchbase Using N1QL and SQSL	

Marco Greco... 389

How Couchbase Won YCSB	

Keshav Murthy...409

RESOURCES... 421

14

Enterprise Jobs
To Be Done

16

17

ENTERPRISES ON GETTING THE JOBS DONE
Authors: Gerald Sangudi, Keshav Murthy

Every enterprise, from the biggest and most familiar brand to the up and coming innovator,

has important jobs to get done. Cisco is a networking company and its jobs include delivering

VOIP solutions, video infrastructure, and more. Marriott is a hotel company and its jobs include

customer management, reservation management, inventory and revenue management, and more.

At the 2016 Couchbase Connect conference, many of these enterprises came and spoke

about their jobs and how they are getting those jobs done. The Couchbase channel has a full

45-minute video of each talk. The typical talk introduces the speaker, the customer, the jobs

(use cases), and how the customer is using Couchbase and other technologies to get those

jobs done.

In the clips below, we have distilled each video to highlight the introductions and the customer's

jobs, challenges, and learnings. Each video is about 10 minutes long, with three customer

speakers in their own words. We enjoyed the videos, and we hope you will too. Here is the

YouTube playlist to listen to all the videos, and here are the individual videos.

If you're reading the printed edition, see the following article for links from this article.

https://dzone.com/articles/enterprise-jobs-to-be-done

Video 1: Amadeus, Paypal, United Airlines

https://connect.couchbase.com/
https://www.youtube.com/user/CouchbaseVideo
https://www.youtube.com/watch?v=_7HvPiVhwnU&list=PLvhUofaqNGMkOqS5HeG_0Qp2c-BBd_MvF
https://dzone.com/articles/enterprise-jobs-to-be-done
https://www.youtube.com/watch?v=_7HvPiVhwnU

18

Video 2: Marriott, Sky, cars.com

Video 3: Staples, Verizon, Doddle

https://www.youtube.com/watch?v=jj2N7hzc9w8
https://www.youtube.com/watch?v=SKda6ZhBbA4

19

Video 4: Equifax, eBay, CenterEdge Software

Video 5: LinkedIn, Cisco, Cvent

https://www.youtube.com/watch?v=Ep6NK_CFAoM
https://www.youtube.com/watch?v=4h3VUpA8EMk

20

Video 6: GE, SHOP.COM, Seenit

https://www.youtube.com/watch?v=Xf7apimLpG4

Query on JSON

22

23

KEEP CALM AND JSON
Author: Keshav Murthy

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for

humans to read and write. It is easy for software to parse and generate. Here’s a JSON

representation of a customer data in JSON. This has served well for interchange and integration.

{
 “Name” : “Jane Smith”,
 “DOB” : “1990-01-30”,
 “Billing” : [
 {
 “type” : “visa”,
 “cardnum” : “5827-2842-2847-3909”,
 “expiry” : “2019-03”
 },
 {
 “type” : “master”,
 “cardnum” : “6274-2542-5847-3949”,
 “expiry” : “2018-12”
 }

http://www.json.org/

24

],
 “address”:
 {
 “street” : “9462, Fillmore”,
 “city” : “San Francisco”,
 “state” : “California”,
 “zip” : 94401
 }
}

So far, so good.

As long as JSON was used for data interchange between multiple layers of application,

everything was good. The moment people started using JSON as the database storage format,

all hell broke loose. When I first saw JSON as the data format in database, I was surprised

databases would pay the cost of keeping both key names and values for every document and

process them for every query. I’ve heard this question numerous times in my talks and articles.

Here are the common objections:

1.	 JSON is text. It’s inefficient.

2.	 JSON has no enforceable structure. Data quality is gone.

3.	 Key-value pairs for every document (row)? You’re nuts.

Let’s discuss these objections one by one.

1. JSON is TEXT. It’s Inefficient.

Online transactions provided by RDBMS was key to life as we know it. Even with the advent of

Web 2.0, RDBMS was running the all the websites in the back. The cost of transaction had come

down from $5 when mankind went to the moon down to $0.02 by the time Jim Gray took

his last sailing trip. This is because of tremendous effort on RDBMS and hardware vendors to

continuously improve to win TPC benchmark wars in the ‘90s. Oracle would publish benchmark

numbers on SUN hardware. Sybase would beat the numbers on HP. Informix would beat it on

SGI. IBM would beat it on IBM. Then, Oracle will come back. Everyone would spend $25,000 to

boast in a full page ad on WSJ — yes, people read newspapers on paper in the ‘90s.

For this effort, databases would optimize the physical design, access paths, I/O, data loading,

transactions, et cetera. This drove many innovations in hardware such as, microprocessor

instruction sets to SMP system design, InfiniBand. Databases squeezed every clock cycle, every

IO, took every locking, logging advantage. Every bottleneck was attacked vigorously. Every

hardware vendor tried to have the best TPC number.

https://www.slideshare.net/journalofinformix/nosql-deepdive-with-informix-nosql-iod-2013
https://www.linkedin.com/pulse/oracles-larry-ellison-wrong-object-stores-keshav-murthy?trk=hp-feed-article-title-like
https://www.youtube.com/watch?v=aQFif3ISgPQ
https://en.wikipedia.org/wiki/Web_2.0
https://www.youtube.com/watch?v=aQFif3ISgPQ
http://www.tpc.org/tpcc/results/tpcc_results.asp?orderby=dbms

25

RDBMS is efficient.

RDBMS is cost conscious — space, time, spacetime, everything.

Compared to RDBMS storage formats, JSON is inefficient.

•	 All the data is in character form of JSON requires conversion processing.

•	 Even numerical data is stored as text.

•	 Each value comes with its key name (key-value) in each document. More stored

& processing.

•	 Allows complex structure to be represented resulting in a runtime overhead.

•	 Officially supports small set of data types. No decimal, no timestamp, etc.

Having JSON in a database means:

•	 Database engine has to understand each document’s schema and process them instead of

handling regular tuples and attributes (rows & columns).

•	 The data types for each key-value in JSON has to be interpreted and processed.

•	 JSON may be a skinnier version of XML, but it’s still fat compared to RDBMS row format.

With all these inefficiencies, why should any database use JSON as the data model? Or

implement a JSON data type?

Yes. JSON was invented as data interchange format and now is the preferred format for

public APIs, data integration scenarios. Most devices, most layers of software can consume

and product data in the form of JSON. Storing and publishing data in JSON means, APIs and

applications can interact with the database in the medium they’re familiar with, in addition

to the advantages below. You’ve to think in term of n-tier application efficiency instead of

comparing it to tuples. Most RDBMS have added JSON as a data type now. As the JSON usage

grows, the storage and processing efficiency will increase.

2. JSON has no enforceable structure in the database.
 Data quality is gone.

Since the JSON databases does not enforce any structure. Application, intentionally or

unintentionally, can insert data in any format as long as it’s a valid JSON.

JSON based databases prefer a “schema on read” model. This means, reader (or application)

has the responsibility to understand and interpret the schema of each document or result from

the query. Query languages like N1QL has many feature for introspection of the document itself.

https://www.postgresql.org/docs/9.3/static/functions-json.html
https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html

26

Having said that, there are tools like Ottoman and Mongoose help you to validate a given JSON

against a predefined structure. While this isn’t a foolproof method for data loading into JSON

database, right controls in the application layer help you enforce consistency.

On the other hand, the flexible, nested structure of JSON helps you map object data into a

single JSON document.

Using JSON also avoids the overhead of object-relational mapping. Applications model and

modify objects. To store these in relational schema, you need to normalize the data into multiple

relations and store them in discrete tables. When you need to reconstruct the object, you need

to join data in these tables, and construct the object back. While object-relational mapping

layers like Hibernate automate this process, you still pay in performance because you issue

multiple queries for each step.

By representing the object in hierarchical nested structure of JSON, you avoid most of the

overhead of object-relational mapping.

http://blog.couchbase.com/nodejs-odm-couchbase-ottoman
http://mongoosejs.com/

27

3. Key-value pairs for every document? You’re nuts!

The answer is, the bottleneck has moved. Bottleneck has moved from database core performance

to database flexibility and change management for iterative application development.

In the ‘80s and ‘90s, as RDBMS was used for many more applications and use cases, it was

important for RDBMS to keep up with the scale and all the hardware innovations. Higher clock

speed, new instructions, more cores, larger memory, all were exploited. As business grew,

demand for more automation, applications, processes increased. As the apps got more popular

and valuable, businesses want to do more with this. Business applications went from back office

automation to real business change drivers.

RDBMS is great at many things. But, not CHANGE themselves. Issues are both organizational

and technical.

RDBMS use a “schema on write” approach. Schema is determined at CREATE TABLE time,

checked for at every INSERT, UPDATE, MERGE. Changing the table structure typically involves

multiple stakeholders, multiple applications, testing all the dependent modules.

Typical ALTER table to add columns, change data types requires exclusive lock on the table

resulting in application and business scheduled downtime. If you need a column to store distinct

types of data or structure, you’re out of luck. this trend, there have been attempts alleviate small

subset of the issues by allowing users to add columns ONLINE.

All these takes time, slowing the pace of development and delivery. You can see further

requirements of schema evolution on JSON hands it in this presentation [starting slide 17].

Using self-describing JSON model via {“key”:value} pairs to store the data makes each

document self-describing. So, you can avoid enforcing the schema on write. When the

documents is read by the query processing engine or the application, they’ll have to read and

interpret the document. Applications typically version the documents so they know how what

to expect as the schema of the document itself evolves. Query languages like N1QL, SQL++

have extended query languages to introspect and process flexible schema.

https://www.amazon.com/Goal-Process-Ongoing-Improvement/dp/0884271951?ie=UTF8&keywords=the%20goal&qid=1464482209&ref_=sr_1_1&sr=8-1
http://www.dbta.com/Columns/DBA-Corner/The-Impact-of-Change-on-Database-Structures-101931.aspx
http://www.dbta.com/Columns/DBA-Corner/The-Impact-of-Change-on-Database-Structures-101931.aspx
http://www.oracle.com/technetwork/articles/database/ddl-optimizaton-in-odb12c-2331068.html
https://www.slideshare.net/journalofinformix/bringing-sql-to-nosql-rich-declarative-query-for-nosql
https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/booleanlogic.html
https://arxiv.org/abs/1405.3631

28

Summary

Here’s the comparison of modeling data in relational model vs. JSON.

Yes. JSON is text, makes schema enforcement challenging and takes more space. But, you get

easier application development, schema evolution, and object-relational mapping.

References

•	 Keep Calm and Query JSON: https://dzone.com/articles/keep-calm-and-query-json

•	 N1QL: http://query.couchbase.com

•	 N1QL Tutorial: http://query-tutorial.couchbase.com

•	 Couchbase: http://www.couchbase.com

•	 Couchbase Documentation: http://developer.couchbase.com

https://dzone.com/articles/keep-calm-and-query-json
https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
http://query-tutorial.couchbase.com
https://www.couchbase.com/
https://developer.couchbase.com/

29

KEEP CALM AND QUERY JSON
Author: Keshav Murthy

You've seen why and how to model data in JSON. Once you have the data in JSON, you can

store and retrieve the JSON documents in any simple key-value databases. If your application

only has to set and get the documents based on the key, use any key-value store. you're all set.

That's seldom the case.

You don't use a database just to store and retrieve JSON. You're trying to solve a real business

problem. You're developing a business application. For a business application, the questions,

operations, and reports don't change just because your database doesn't support query.

Business applications have to do many things requiring multi-object operation:

•	 Process Order Checkout.

•	 Search stores data for the shoe customer is looking for.

•	 How many new customers did we get last month?

•	 Generate the outstanding list of shipments due for today.

•	 Retrieve the customer order using case insensitive customer name.

•	 Load the new inventory data.

•	 Merge customer lists.

https://dzone.com/articles/keep-calm-and-json

30

For doing each of these tasks, you need to search your database efficiently. Do the select-join-

group-project-aggregate-order processing of the data to produce a report. Similarly, you'll have

to insert, update, delete, and merge to represent the real-world business processes.

Now, the question is, how would you go about implementing all these for a NoSQL key-value

systems with GET and SET APIs? You do this by writing a program to do each task. Of course,

writing the application is expensive. Scaling, debugging, and maintaining it makes it even

more expensive.

Imagine a use case: Find high-value customers with orders > $10,000. With a NoSQL

API approach, you write a program to retrieve the objects and do the filtering, grouping,

aggregation in your program.

Now, the question is, how would you go about implementing all these in a NoSQL

key-value systems with GET and SET APIs? You do this by writing a program to do each

task. Of course, writing the application is expensive, scaling, debugging and maintaining it

makes it even more expensive.

31

This is the reason RDBMS and SQL were invented. SQL does set processing naturally. On

the relational model, each of these tasks can be done via a series of statements. Each SQL

statement takes set of tuples, does the processing, and produces another set of tuples.

SELECT c.CustID, Customers.Name, SUM(o.Amount)
FROM Orders o INNER JOIN LineItems l ON (o.CustID = l.CustID)

 INNER JOIN Customers c (o.CustID = c.CustID)
GROUP BY c.CustID, c.Name
HAVING SUM(o.Amount) > 10000
ORDER BY SUM(o.Amount) DESC

32

As the NoSQL key-value databases evolved, they added the map-reduce frameworks so

developers can use and cascade them to do complex work. Cassandra, MongoDB, and

Couchbase introduced SQL-like languages on top distributed NoSQL database to make the

query easier. MongoDB API looks different, but you'll still see something like SQL.

Couchbase N1QL (Non-First Normal Form Query Language) provides all of the select-join-

project operations in SQL on the flexible JSON data model. N1QL defines a four-valued boolean

logic for boolean expressions that include the new MISSING value in a flexible schema and the

collation sequence for data types. In addition, N1QL extends SQL to access and manipulate all

parts of nested JSON structure.

N1QL takes sets of JSON documents as input, processes them and gives you a set of JSON

documents. Just replace tuples with JSON in SQL definition, you get N1QL.

Let's see how we can write the previous query in N1QL. Pretty close to SQL, but it has access to

nested data and does the UNNESTING of arrays within ORDERS document.

SELECT Customers.ID, Customers.Name, SUM(OrderLine.Amount)
FROM Orders UNNEST Orders.LineItems AS OrderLine
 INNER JOIN Customers ON KEYS Orders.CustID
GROUP BY Customers.ID, Customers.Name
HAVING SUM(OrderLine.Amount) > 10000
ORDER BY SUM(OrderLine.Amount) DESC

https://developer.couchbase.com/documentation/server/3.x/admin/Views/views-translateSQL.html
http://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html
https://docs.mongodb.com/manual/reference/
https://developer.couchbase.com/documentation/server/4.5/getting-started/first-n1ql-query.html
https://docs.mongodb.com/manual/reference/sql-comparison/
https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/booleanlogic.html
https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/booleanlogic.html
https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/datatypes.html
https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/nestedops.html

33

In addition to SELECT, Couchbase N1QL supports the traditional SQL statements: INSERT,

UPDATE, DELETE, and MERGE. Here are some examples:

INSERT INTO ORDERS (KEY, VALUE)
VALUES ("1.ABC.X382", {"O_ID":482, "O_D_ID":3, "O_W_ID":4});

UPDATE ORDERS SET O_CARRIER_ID = "ABC987"
WHERE O_ID = 482 AND O_D_ID = 3 AND O_W_ID = 4

DELETE FROM NEW_ORDER
WHERE NO_D_ID = 291 AND NO_W_ID = 3482 AND NO_O_ID = 2483

MERGE INTO CUSTOMER USING
 (SELECT CID FROM NEWCUST WHERE STATE = 'CA') as NC
ON KEY NC.CID
 WHEN MATCHED THEN UPDATE SET CUSTOMER.STATE= 'CA';

Here's the comparison between SQL based RDBMS and N1QL:

Query Features SQL on RDBMS N1QL: SQL on JSON

Objects Tables, tuples, columns Keyspaces, JSON Documents,

key-value

References Flat references:Table.column

E.g. customer.name, customer.zip

Flat & Nested: keyspace.keyvalue

E.g. customer.name,

customer.address.zip,

Customer.contact[0].phone.mobile

Statements SELECT, INSERT, UPDATE,

DELETE, MERGE

SELECT, INSERT, UPDATE,

DELETE, MERGE

Query Operations •	 Select, Join, Project, Subqueries

•	 Strict Schema

•	 Strict Type checking

•	 Select, Join, Project, Subqueries

•	 Nest & Unnest

•	 Look Ma! No Type Mismatch

Errors!

•	 JSON keys act as columns

Schema Predetermined Columns •	 Fully addressable JSON

•	 Flexible document structure

Data Types SQL Data types

Conversion Functions

•	 JSON Data types: Strings,

Number Boolean, Objects,

Arrays, null

•	 Conversion Functions

Query Processing INPUT: Sets of Tuples

OUTPUT: Set of Tuples

INPUT: Sets of JSON

OUTPUT: Set of JSON

34

Summary:

NoSQL databases give you the ability to read and write massive amounts of data at a

substantially low latency and substantially low cost compared to RDBMS.Not having a query is

like having a great engine without a steering wheel. With query on JSON from Couchbase, you

can ask important questions like -- where can I find my favorite beer?.

SELECT {"Mybeer": "My Beer is " || beer.name || "."},
 Array_agg({"name":brewery.name}) brewery,
 Array_agg({"name":brewery.name, "state":brewery.state,
"city":brewery.city, "location":brewery.geo}) locations,
 Array_count(Array_agg(brewery.NAME)) AS brewery_count
FROM 'beer-sample' beer
LEFT OUTER JOIN 'beer-sample' brewery
ON keys beer.brewery_id
WHERE beer.type = 'beer'
AND brewery.type = 'brewery'
AND brewery.state = 'California'
GROUP BY beer.NAME
ORDER BY array_count(array_agg(brewery.NAME)) DESC,
 beer.NAME ASC limit 5 ;

You have your steering wheel back, now!

35

NEST AND UNNEST: NORMALIZING AND
DENORMALIZING JSON ON THE FLY
Author: Johan Larson

When modelling data in a JSON database like Couchbase, developers and architects have two

options for representing hierarchical data. The first option is to embed the related objects in the

parent object, like this:

"1" : {"name":"doc 1","subdocs":[{"name":"doc 1.1"},{"name":"doc 1.2"},{"name":"doc
1.3"}]}
"2" : {"name":"doc 2","subdocs":[{"name":"doc 2.1"},{"name":"doc 2.2"}]}

The alternative is to represent the related objects separately, and refer to them by ID, like this:

"1" : {"name":"doc 1","subdocs":["1.1","1.2","1.3"]}
"2" : {"name":"doc 2","subdocs":["2.1","2.2"]}
"1.1" : {"name":"doc 1.1"}
"1.2" : {"name":"doc 1.2"}
"1.3" : {"name":"doc 1.3"}
"2.1" : {"name":"doc 2.1"}
"2.1" : {"name":"doc 2.2"}

Exactly when to use one form or the other is beyond the scope of this article. But whichever is

chosen, the N1QL language lets developers convert to the other on the fly. These conversions

are done with two operators, NEST and UNNEST.

"UNNEST"-ing Nested Structures

Suppose we have an order-tracking application and we have designed our database object

model to have the line items stored within the order document itself (nested), like this:

"1" : {
 "order_id": "1",
 "type": "order",
 "customer_id": "24601",
 "total_price": 30.3,
 "lineitems": [
 { "item_id": 576, "quantity": 3, "item_price": 4.99, "base_price": 14.97,
"tax": 0.75,
 "final_price": 15.72 },
 { "item_id": 234, "quantity": 1, "item_price": 12.95, "base_price": 12.95,
"tax": 0.65,
 "final_price": 13.6 },
 { "item_id": 122, "quantity": 2, "item_price": 0.49, "base_price": 0.98,

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/from.html#story-h2-5
https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/from.html#story-h2-4

36

"final_price": 0.98 }
]
}
"5" : {
 "order_id": "5",
 "type": "order",
 "customer_id": "98732",
 "total_price": 428.04,
 "lineitems": [
 { "item_id": 770, "quantity": 3, "item_price": 95.97, "base_price": 287.91,
"tax": 14.4,
 "final_price": 302.31 },
 { "item_id": 712, "quantity": 1, "item_price": 125.73, "base_price": 125.73,
 "final_price": 125.73 }
]
}

Now we want to compute the tax payable for each order. How would we do it? The tax

information is not available at the order level; we only know the tax for each line item.

We have to do two things. First, we have to extract the line items from the orders, and then we

have to aggregate the taxes by order. The extraction will be done with an UNNEST operation

and the aggregation with an aggregation function and a GROUP BY.

We can extract the line items with this query:

SELECT * FROM demo UNNEST lineitems

That produces this result:

[
 {
 "demo": {
 "customer_id": "24601",
 "lineitems": [
 { "base_price": 14.97, "final_price": 15.72, "item_id": 576, "item_price":
4.99, "quantity": 3,
 "tax": 0.75 },
 { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_price":
12.95, "quantity": 1,
 "tax": 0.65 },
 { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_price":
0.49, "quantity": 2 }
],

37

 "order_id": "1",
 "total_price": 30.3,
 "type": "order"
 },
 "lineitems": { "base_price": 14.97, "final_price": 15.72, "item_id": 576,
"item_price": 4.99,
 "quantity": 3, "tax": 0.75 }
 },
 {
 "demo": {
 "customer_id": "24601",
 "lineitems": [
 { "base_price": 14.97, "final_price": 15.72, "item_id": 576, "item_price":
4.99, "quantity": 3,
 "tax": 0.75
 },
 { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_price":
12.95, "quantity": 1,
 "tax": 0.65
 },
 { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_price":
0.49, "quantity": 2 }
],
 "order_id": "1",
 "total_price": 30.3,
 "type": "order"
 },
 "lineitems": { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_
price": 12.95,
 "quantity": 1, "tax": 0.65 }
 },
 {
 "demo": {
 "customer_id": "24601",
 "lineitems": [
 { "base_price": 14.97, "final_price": 15.72, "item_id": 576, "item_price":
4.99, "quantity": 3,
 "tax": 0.75 },
 { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_price":
12.95, "quantity": 1,
 "tax": 0.65

38

 },
 { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_price":
0.49, "quantity": 2 }
],
 "order_id": "1",
 "total_price": 30.3,
 "type": "order"
 },
 "lineitems": { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_
price": 0.49,
 "quantity": 2 }
 },
 {
 "demo": {
 "customer_id": "98732",
 "lineitems": [
 { "base_price": 287.91, "final_price": 302.31, "item_id": 770, "item_
price": 95.97,
 "quantity": 3, "tax": 14.4 },
 { "base_price": 125.73, "final_price": 125.73, "item_id": 712, "item_
price": 125.73,
 "quantity": 1 }
],
 "order_id": "5",
 "total_price": 428.04,
 "type": "order"
 },
 "lineitems": { "base_price": 287.91, "final_price": 302.31, "item_id": 770,
"item_price": 95.97,
 "quantity": 3, "tax": 14.4 }
 },
 {
 "demo": {
 "customer_id": "98732",
 "lineitems": [
 { "base_price": 287.91, "final_price": 302.31, "item_id": 770, "item_
price": 95.97,
 "quantity": 3, "tax": 14.4 },
 { "base_price": 125.73, "final_price": 125.73, "item_id": 712, "item_
price": 125.73,
 "quantity": 1 }

39

],
 "order_id": "5",
 "total_price": 428.04,
 "type": "order"
 },
 "lineitems": { "base_price": 125.73, "final_price": 125.73, "item_id": 712,
"item_price": 125.73,
 "quantity": 1 }
 }
]

That's a big result. Let's look more closely. The result has five objects, each with two fields:

"demo" contains the entire original (parent) object, and "lineitems" contains one of the elements

of the "lineitems" array in the original object. So we're extracted each line item, and we've kept

around each original (parent) object, in case we need it.

We can then group by demo.order_id and sum up lineitems.tax, with this query:

SELECT demo.order_id, SUM(lineitems.tax) AS total_tax
FROM demo UNNEST lineitems
GROUP BY demo.order_id

Which produces this trim result:

[
 {
 "order_id": "1",
 "total_tax": 1.4
 },
 {
 "order_id": "5",
 "total_tax": 14.4
 }
]

Using Indexes for UNNEST

Let's think about how the basic query is executed.

EXPLAIN SELECT * FROM demo UNNEST lineitems

The plan produced is this:

[
 {
 "plan": {

40

 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "PrimaryScan",
 "index": "#primary",
 "keyspace": "demo",
 "namespace": "default",
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "keyspace": "demo",
 "namespace": "default"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Unnest",
 "as": "lineitems",
 "expr": "('demo'.'lineitems')"
 }
]
 }
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "self",
 "star": true
 }
]
 },

41

 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 "text": "SELECT * FROM demo UNNEST lineitems"
 }
]

This plan is going to scan the primary index for the demo bucket, fetch every record it

references, and feed it into a scan operator.

If we want to be more selective about the orders, that's easy enough with an index. We add a

predicate to the query,

SELECT * FROM demo UNNEST lineitems WHERE demo.customer_id = "999"

We also add an index on the new field,

CREATE INDEX demo_customer_id(customer_id)

And now the plan contains a shiny new IndexScan operator that uses the new index.

 {
 "#operator": "IndexScan",
 "index": "demo_customer_id",
 "index_id": "30061046820ccba9",
 "keyspace": "demo",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"999\""
],
 "Inclusion": 3,
 "Low": [
 "\"999\""
]
 }
 }
],
 "using": "gsi"

42

 }
But what if we want to be selective about the line items? Suppose we only want line items with

item_id = 567, like this:

SELECT * FROM demo UNNEST lineitems WHERE lineitems.item_id = 576

For that, we'll need an array index, like this

CREATE INDEX demo_lineitem_item_id ON
demo(DISTINCT ARRAY l.item_id FOR l IN lineitems END)

This is an index on the item_id fields of the lineitems array in each order. Then we try an

EXPLAIN, and nothing has happened. The index doesn't get selected.

The problem is the original query. The current version of Couchbase is very particular about

how it uses array indexes, and the UNNEST clause has to be in a particular format to match the

index. In particular, look at the "l.item_id" in the index definition. That has to exactly match the

field name and prefix in the query. Things work correctly if we change the query like this:

SELECT * FROM demo UNNEST lineitems l WHERE l.item_id = 576

Then the EXPLAIN shows us a different operator, indicating the index is in use:

 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "demo_lineitem_item_id",
 "index_id": "f6b19179f6dc0496",
 "keyspace": "demo",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "576"
],
 "Inclusion": 3,
 "Low": [
 "576"
]
 }
 }
],
 "using": "gsi"
 }
 }

43

More information about array indexes is available here

Left Outer Unnest

Now, suppose we add a third document to the demo bucket, like this:

INSERT INTO demo VALUES ("6", {
 "customer_id": "77077",
 "order_id": "6",
 "total_price": 0,
 "type": "order"
})

If we then rerun the query...

SELECT * FROM demo UNNEST lineitems

...we see a result, but the new order is not included. That's because the new order has no line

items, and therefore does not participate in the join.

We can include the new order in the result by switching to a LEFT OUTER UNNEST, which

includes documents even when they have no sub-objects.

The query...

SELECT * FROM demo LEFT OUTER UNNEST lineitems

...yields the same results as the earlier one, but this time with the new order included:

{
 "demo": {
 "customer_id": "77077",
 "order_id": "6",
 "total_price": 0,
 "type": "order"
 }
 }

JOIN With UNNEST

Now let us suppose we have decomposed the orders into main and subordinate objects,

perhaps because the principal object had grown too large,and was generating too much

network traffic, like this:

"1" : {
 "order_id": "1",
 "type": "order",
 "customer_id": "24601",
 "sub" : "1A"

https://blog.couchbase.com/making-the-most-of-your-arrays...-with-array-indexing/

44

}
"1A" : {
 "type" : "order_sub",
 "order_sub_id" : "1A",
 "total_price": 30.3,
 "lineitems": [
 { "item_id": 576, "quantity": 3, "item_price": 4.99, "base_price": 14.97,
"tax": 0.75,
 "final_price": 15.72 },
 { "item_id": 234, "quantity": 1, "item_price": 12.95, "base_price": 12.95,
"tax": 0.65,
 "final_price": 13.6 },
 { "item_id": 122, "quantity": 2, "item_price": 0.49, "base_price": 0.98, "fi-
nal_price": 0.98 }
]
}
"5" : {
 "order_id": "5",
 "type": "order",
 "customer_id": "98732",
 "sub" : "5A",
}
"5A" : {
 "type" : "order_sub",
 "order_sub_id" : "5A",
 "total_price": 428.04,
 "lineitems": [
 { "item_id": 770, "quantity": 3, "item_price": 95.97, "base_price": 287.91,
"tax": 14.4,
 "final_price": 302.31 },
 { "item_id": 712, "quantity": 1, "item_price": 125.73, "base_price": 125.73,
 "final_price": 125.73 }
]
}

How does that force us to modify our query? We can join up the objects and subordinate

objects like this:

45

SELECT * FROM demo ordr JOIN demo subdata ON KEYS ordr.sub

That yields this result:

[
 {
 "ordr": {
 "customer_id": "24601",
 "order_id": "1",
 "sub": "1A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [
 {
 "base_price": 14.97,
 "final_price": 15.72,
 "item_id": 576,
 "item_price": 4.99,
 "quantity": 3,
 "tax": 0.75
 },
 {
 "base_price": 12.95,
 "final_price": 13.6,
 "item_id": 234,
 "item_price": 12.95,
 "quantity": 1,
 "tax": 0.65
 },
 {
 "base_price": 0.98,
 "final_price": 0.98,
 "item_id": 122,
 "item_price": 0.49,
 "quantity": 2
 }
],
 "order_sub_id": "1A",
 "total_price": 30.3,
 "type": "order_sub"
 }

46

 },
 {
 "ordr": {
 "customer_id": "98732",
 "order_id": "5",
 "sub": "5A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [
 {
 "base_price": 287.91,
 "final_price": 302.31,
 "item_id": 770,
 "item_price": 95.97,
 "quantity": 3,
 "tax": 14.4
 },
 {
 "base_price": 125.73,
 "final_price": 125.73,
 "item_id": 712,
 "item_price": 125.73,
 "quantity": 1
 }
],
 "order_sub_id": "5A",
 "total_price": 428.04,
 "type": "order_sub"
 }
 }
]

We can then unnest on subdata.lineitems to split out the individual lineitems:

SELECT * FROM demo ordr JOIN demo subdata ON KEYS ordr.sub
UNNEST subdata.lineitems

That produces five results (one for each line item), structured like this:

{
 "lineitems": {
 "base_price": 14.97,
 "final_price": 15.72,

47

 "item_id": 576,
 "item_price": 4.99,
 "quantity": 3,
 "tax": 0.75
 },
 "ordr": {
 "customer_id": "24601",
 "order_id": "1",
 "sub": "1A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [
 {
 "base_price": 14.97,
 "final_price": 15.72,
 "item_id": 576,
 "item_price": 4.99,
 "quantity": 3,
 "tax": 0.75
 },
 {
 "base_price": 12.95,
 "final_price": 13.6,
 "item_id": 234,
 "item_price": 12.95,
 "quantity": 1,
 "tax": 0.65
 },
 {
 "base_price": 0.98,
 "final_price": 0.98,
 "item_id": 122,
 "item_price": 0.49,
 "quantity": 2
 }
],
 "order_sub_id": "1A",
 "total_price": 30.3,
 "type": "order_sub"
 }
 }

From there, we can aggregate as before.

48

"NEST"-ing an Unnested Structure

Now let's flip the problem. What if the data starts out with orders and line items as separate

entries in the database (unnested), and we want to group them together with line items under

the documents. For example, we may want for each order, the items included and the quantity

of each item.

In this case, the data might be represented like this, using seven separate objects:

"1" : { "order_id": "1", "type": "order", "customer_id": "24601", "total_price":
30.3,
 "lineitems": ["11", "12", "13"] }
"11" : { "lineitem_id": "11", "type": "lineitem", "item_id": 576, "quantity": 3,
"item_price": 4.99,
 "base_price": 14.97, "tax": 0.75, "final_price": 15.72 }
"12" : { "lineitem_id": "12", "type": "lineitem", "item_id": 234, "quantity": 1,
"item_price": 12.95,
 "base_price": 12.95, "tax": 0.65, "final_price": 13.6 }
"13" : { "lineitem_id": "13", "type": "lineitem", "item_id": 122, "quantity": 2,
"item_price": 0.49,
 "base_price": 0.98, "final_price": 0.98 }
"5" : { "order_id": "5", "type": "order", "customer_id": "98732", "total_price":
428.04,
 "lineitems" : ["51", "52"] }
"51" : { "lineitem_id": "51", "type": "lineitem", "item_id": 770, "quantity": 2,
"item_price": 95.97,
 "base_price": 287.91, "tax": 14.4, "final_price": 302.31 }
"52" : { "lineitem_id": "52", "type": "lineitem", "item_id": 712, "quantity": 1,
"item_price": 125.73,
 "base_price": 125.73, "final_price": 125.73 }

From these documents, we can use the NEST operator to transform the individual objects into

nested structures using this query:

SELECT * FROM demo ordr NEST demo li ON KEYS ordr.lineitems

The query yields this result:

[
 {
 "li": [
 { "base_price": 14.97, "final_price": 15.72, "item_id": 576, "item_price":
4.99,
 "lineitem_id": "11", "quantity": 3, "tax": 0.75, "type": "lineitem" },
 { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_price":

49

0.49, "lineitem_id": "13",
 "quantity": 2, "type": "lineitem" },
 { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_price":
12.95,
 "lineitem_id": "12", "quantity": 1, "tax": 0.65, "type": "lineitem" }
],
 "ordr": {
 "customer_id": "24601",
 "lineitems": [
 "11",
 "12",
 "13"
],
 "order_id": "1",
 "total_price": 30.3,
 "type": "order"
 }
 },
 {
 "li": [
 { "base_price": 287.91, "final_price": 302.31, "item_id": 770, "item_price":
95.97,
 "lineitem_id": "51", "quantity": 2, "tax": 14.4, "type": "lineitem" },
 { "base_price": 125.73, "final_price": 125.73, "item_id": 712,"item_price":
125.73,
 "lineitem_id": "52", "quantity": 1, "type": "lineitem" }
],
 "ordr": {
 "customer_id": "98732",
 "lineitems": [
 "51",
 "52"
],
 "order_id": "5",
 "total_price": 428.04,
 "type": "order"
 }
 }
]

50

Again, this is quite a big result. But let's look more closely. There are two objects in the result,

one for each order. Each object has two fields. The order fields are under "ordr", and the line

items are in an array under "li".

But we can simplify further. We just need the "order_id" of each order, and we only need the

"item_id" and "quantity" for each line item. We can get the "order_id" from ordr.order_id, and

we can extract the "item_id" and "quantity" from the "li" array using an array comprehension,

like this:

SELECT ordr.order_id, ARRAY {"item_id": l.item_id, "quantity" : l.quantity} FOR l
IN li END as items
FROM demo ordr NEST demo li ON KEYS ordr.lineitems

The query produces this trim result:

[
 {
 "items": [
 { "item_id": 576, "quantity": 3 },
 { "item_id": 234, "quantity": 1 },
 { "item_id": 122, "quantity": 2 }
],
 "order_id": "1"
 },
 {
 "items": [
 { "item_id": 712, "quantity": 1 },
 { "item_id": 770, "quantity": 2 }
],
 "order_id": "5"
 }
]

Using Indexes for Nest Operations

Let's return to the original NEST query and check Couchbase will execute it.

EXPLAIN SELECT * FROM demo ordr NEST demo li ON KEYS ordr.lineitems

That gets us this plan:

[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [

51

 {
 "#operator": "PrimaryScan",
 "index": "#primary",
 "keyspace": "demo",
 "namespace": "default",
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "as": "ordr",
 "keyspace": "demo",
 "namespace": "default"
 },
 {
 "#operator": "Nest",
 "as": "li",
 "keyspace": "demo",
 "namespace": "default",
 "on_keys": "('ordr'.'lineitems')"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "self",
 "star": true
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]

52

 },
 "text": "SELECT * FROM demo ordr NEST demo li ON KEYS ordr.lineitems"
 }
]

No great mystery here. Couchbase is going to scan the primary index on the demo bucket, and

probe the primary index to get each lineitem.

If there is a condition on the primary object that can be served by an index, Couchbase will use

it. You can see the difference by adding a predicate and an index like this:

CREATE INDEX demo_cust on demo(customer_id)
EXPLAIN SELECT * FROM demo ordr
NEST demo li ON KEYS ordr.lineitems WHERE ord.customer_id = 334

Now the plan contains an IndexScan operator, which shows that Couchbase will use

the new index:

 {
 "#operator": "IndexScan",
 "index": "demo_cust",
 "index_id": "74769ea5090a37b7",
 "keyspace": "demo",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "334"
],
 "Inclusion": 3,
 "Low": [
 "334"
]
 }
 }
],
 "using": "gsi"
 }

What about conditions on the line items? Suppose we have a predicate item_id=555?

53

Here, it turns out indexes don't help. Predicates on the right-hand side of NEST operators are

applied after the NEST operation, period. And this may have consequences for the data design.

Any fields that are needed for selectivity when using NEST operations should be placed in the

principal object, not pushed down to the secondary objects.

Left Outer Nest

In the earlier section, we used nest to group external objects referenced by keys into the top-

level objects they belonged to. But what about objects that don't have subobjects?

We can test this by adding a third object to the data set, like this:

INSERT INTO demo VALUES ("6", {
 "customer_id": "77077",
 "order_id": "6",
 "total_price": 0,
 "type": "order"
})

Then we rerun the query, and get exactly the same result as before. Order "6" isn't present.

Why? The problem is that order "6" doesn't have a lineitems array, so it isn't included in the join.

How could we add it to the result? First of all we need to switch to a LEFT OUTER NEST

operator in the query. But that isn't quite enough. That change alone will also include

documents in the demo bucket that are lineitems. We need want only documents that are

orders, even if they don't have lineitems. That gets us this final query...

SELECT * FROM demo ordr LEFT OUTER NEST demo li ON KEYS ordr.lineitems
WHERE ordr.type = "order"

...producing this result, including order "6":

[
 {
 "li": [
 { "base_price": 14.97, "final_price": 15.72, "item_id": 576, "item_price":
4.99,
 "lineitem_id": "11", "quantity": 3, "tax": 0.75, "type": "lineitem" },
 { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_price":
12.95,
 "lineitem_id": "12", "quantity": 1, "tax": 0.65, "type": "lineitem" },
 { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_price":
0.49,
 "lineitem_id": "13", "quantity": 2, "type": "lineitem" }
],
 "ordr": {

54

 "customer_id": "24601",
 "lineitems": [
 "11",
 "12",
 "13"
],
 "order_id": "1",
 "total_price": 30.3,
 "type": "order"
 }
 },
 {
 "li": [
 { "base_price": 287.91, "final_price": 302.31, "item_id": 770, "item_price":
95.97,
 "lineitem_id": "51", "quantity": 2, "tax": 14.4, "type": "lineitem" },
 { "base_price": 125.73, "final_price": 125.73, "item_id": 712, "item_price":
125.73,
 "lineitem_id": "52", "quantity": 1, "type": "lineitem" }
],
 "ordr": {
 "customer_id": "98732",
 "lineitems": [
 "51",
 "52"
],
 "order_id": "5",
 "total_price": 428.04,
 "type": "order"
 }
 },
 {
 "ordr": {
 "customer_id": "77077",
 "order_id": "6",
 "total_price": 0,
 "type": "order"
 }
 }

]

55

JOIN With NEST

"1" : { "order_id": "1", "type": "order", "customer_id": "24601", "sub" : "1A" }
"1A" : { "total_price": 30.3, "lineitems": ["11", "12", "13"], "type" : "or-
der_sub",
 "order_sub_id" : "1A" }
"11" : { "lineitem_id": "11", "type": "lineitem", "item_id": 576, "quantity": 3,
"item_price": 4.99,
 "base_price": 14.97, "tax": 0.75, "final_price": 15.72 }
"12" : { "lineitem_id": "12", "type": "lineitem", "item_id": 234, "quantity": 1,
"item_price": 12.95,
 "base_price": 12.95, "tax": 0.65, "final_price": 13.6 }
"13" : { "lineitem_id": "13", "type": "lineitem", "item_id": 122, "quantity": 2,
"item_price": 0.49,
 "base_price": 0.98, "final_price": 0.98 }
"5" : { "order_id": "5", "type": "order", "customer_id": "98732", "sub" : "5A" }
"5A" : { "total_price": 428.04,
 "lineitems" : ["51", "52"], "type" : "order_sub", "order_sub_id" : "5A"
}
"51" : { "lineitem_id": "51", "type": "lineitem", "item_id": 770, "quantity": 2,
"item_price": 95.97,
 "base_price": 287.91, "tax": 14.4, "final_price": 302.31 }
"52" : { "lineitem_id": "52", "type": "lineitem", "item_id": 712, "quantity": 1,
"item_price": 125.73,
 "base_price": 125.73, "final_price": 125.73 }

How then can we reform the original object?

We begin by joining on the "sub" field to recreate the original object...

SELECT * FROM demo ordr JOIN demo subdata ON KEYS ords.sub

...yielding this:

[
 {
 "ordr": {
 "customer_id": "24601",
 "order_id": "1",
 "sub": "1A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [

56

 "11",
 "12",
 "13"
],
 "order_sub_id": "1A",
 "total_price": 30.3,
 "type": "order_sub"
 }
 },
 {
 "ordr": {
 "customer_id": "98732",
 "order_id": "5",
 "sub": "5A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [
 "51",
 "52"
],
 "order_sub_id": "5A",
 "total_price": 428.04,
 "type": "order_sub"
 }
 }
]

We can then add a NEST clause to join in the line items, too.

SELECT * FROM demo ordr JOIN demo subdata ON KEYS ordr.sub
NEST demo li ON KEYS subdata.lineitems

That yields this result:

[
 {
 "li": [
 { "base_price": 14.97, "final_price": 15.72, "item_id": 576, "item_price": 4.99,
 "lineitem_id": "11", "quantity": 3, "tax": 0.75, "type": "lineitem" },
 { "base_price": 12.95, "final_price": 13.6, "item_id": 234, "item_price": 12.95,
 "lineitem_id": "12", "quantity": 1, "tax": 0.65, "type": "lineitem" },
 { "base_price": 0.98, "final_price": 0.98, "item_id": 122, "item_price": 0.49,
 "lineitem_id": "13", "quantity": 2, "type": "lineitem"

57

 }
],
 "ordr": {
 "customer_id": "24601",
 "order_id": "1",
 "sub": "1A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [
 "11",
 "12",
 "13"
],
 "order_sub_id": "1A",
 "total_price": 30.3,
 "type": "order_sub"
 }
 },
 {
 "li": [
 { "base_price": 287.91, "final_price": 302.31, "item_id": 770, "item_price": 95.97,
 "lineitem_id": "51", "quantity": 2, "tax": 14.4, "type": "lineitem" },
 { "base_price": 125.73, "final_price": 125.73, "item_id": 712, "item_price":
125.73,
 "lineitem_id": "52", "quantity": 1, "type": "lineitem" }
],
 "ordr": {
 "customer_id": "98732",
 "order_id": "5",
 "sub": "5A",
 "type": "order"
 },
 "subdata": {
 "lineitems": [
 "51",
 "52"
],
 "order_sub_id": "5A",
 "total_price": 428.04,
 "type": "order_sub"
 }
 }
]

58

Summary

When working with a document database, we may need to pull nested objects from their top-

level documents. In Couchbase N1QL, this is done with the UNNEST operator.

Conversely, we may need to group individual objects under their top-level documents. In

Couchbase N1QL, this is done with the NEST operator.

Try it Yourself

You can create the dataset used in the UNNEST section by going to the Data Buckets tab of

your Couchbase admin console and creating a "demo" bucket. Then go to the Query tab, and

execute these two statements:

CREATE PRIMARY INDEX ON demo
INSERT INTO demo VALUES ("1",{
 "order_id": "1",
 "type": "order",
 "customer_id": "24601",
 "total_price": 30.3,
 "lineitems": [
 { "item_id": 576, "quantity": 3, "item_price": 4.99, "base_price": 14.97, "tax":
0.75,
 "final_price": 15.72 },
 { "item_id": 234, "quantity": 1, "item_price": 12.95, "base_price": 12.95, "tax":
0.65,
 "final_price": 13.6 },
 { "item_id": 122, "quantity": 2, "item_price": 0.49, "base_price": 0.98, "final_
price": 0.98 }
]
}),
("5",{
 "order_id": "5",
 "type": "order",
 "customer_id": "98732",
 "total_price": 428.04,
 "lineitems": [
 { "item_id": 770, "quantity": 3, "item_price": 95.97, "base_price": 287.91, "tax":
14.4,
 "final_price": 302.31 },
 { "item_id": 712, "quantity": 1, "item_price": 125.73, "base_price": 125.73,
 "final_price": 125.73 }
]
})

59

You can then run the query:

SELECT demo.order_id, SUM(lineitems.tax) as total_tax FROM demo UNNEST lineitems
GROUP BY demo.order_id

Then empty the demo bucket:

DELETE FROM demo

Set up the data for the NEST section:

INSERT INTO demo VALUES

("1",{ "order_id": "1", "type": "order", "customer_id": "24601",
 "total_price": 30.3, "lineitems": ["11", "12", "13"]}),
("11",{ "lineitem_id": "11", "type": "lineitem", "item_id": 576, "quantity": 3,
"item_price": 4.99,
 "base_price": 14.97, "tax": 0.75, "final_price": 15.72 }),
("12",{ "item_id": 234, "type": "lineitem", "lineitem_id": "12", "quantity": 1,
"item_price": 12.95,
 "base_price": 12.95, "tax": 0.65, "final_price": 13.6 }),
("13",{ "lineitem_id": "13", "type": "lineitem", "item_id": 122, "quantity": 2,
"item_price": 0.49,
 "base_price": 0.98, "final_price": 0.98 }),
("5",{ "order_id": "5", "type": "order", "customer_id": "98732", "total_price":
428.04,
 "lineitems" : ["51", "52"] }),
("51",{ "lineitem_id": "51", "type": "lineitem", "item_id": 770, "quantity": 2,
"item_price": 95.97,
 "base_price": 287.91, "tax": 14.4, "final_price": 302.31 }),
("52",{ "lineitem_id": "52", "type": "lineitem", "item_id": 712, "quantity": 1,
"item_price": 125.73,
 "base_price": 125.73, "final_price": 125.73 })

And run the query:

SELECT ordr.order_id, ARRAY {"item_id": l.item_id, "quantity" : l.quantity}
FOR l IN li END as items
FROM demo ordr NEST demo li ON KEYS ordr.lineitems

60

61

WORKING WITH SCHEMAS IN A
SCHEMA-FLEXIBLE DATASTORE
Author: Eben Haber

A schema-flexible JSON datastore, such as Couchbase, provides a huge advantage in flexibility:

the application developer can manage schema evolution and referential integrity in a way best

suited to the requirements of the application. There's no need to bring down the database or

get permission from the DBAs to change the schema, the application can just start writing data

in a new schema, with the application logic handling new and old data schemas as appropriate.

This flexibility comes at a cost, however, beyond the need to write more sophisticated

application code. Without a formal schema definition, it can be much harder for people to know

the data structure details that are needed to write application code, queries, or define indexes:

•	 How many distinct document schemas exist in a data store?

•	 How frequently are fields present?

•	 What is the data like in each field? Type? Format? Range?

Couchbase 4.5 introduced a new web-based query interface, which was further refined in

Couchbase 5.0:

62

This interface includes the "Bucket Insights" panel, where if you click the triangle next to a

bucket name, something very much like a schema appears:

63

How is this possible, when Couchbase doesn't have or enforce schemas? Behind the scenes,

the "Bucket Insights" panel is using N1QL's INFER command, which takes a random sample of

documents from a bucket, and infers what schema(s) exist for those documents. The example

above looks at the beer-sample bucket (which is available with every instance of Couchbase).

Note that:

•	 INFER found not one but two schemas with different sets of fields, these schemas are

called "flavors". There are some fields in common between the flavors (description, name,

and type), but more fields are different between the two flavors.

•	 Hovering the mouse over a field name shows some sample values for that field.

•	 Since INFER keeps track of some of the sample values for each field, it knows which fields

only have a single distinct value for the documents in flavor. In this case, it sees only a

single value for the field named, "type", so it lists that field as something "in-common"

for all documents in each flavor. Using a "type" field is a common pattern when data

modeling with Couchbase, yet there are no semantics to the name, it could be called

"type" or "kind" or "category" or anything. The INFER command helps users learn what

approach was taken by the person doing data modeling.

INFER can be run as a regular N1QL command to derive details about a bucket's documents.

How does INFER work?

•	 INFER starts with a random sample of documents from a bucket. By default, it asks for

1000 documents, but a different sample size may be specified.

•	 INFER extracts a schema from each document (field names, types), maintaining a hash

table of all distinct schemas seen thus far. Two schemas are identical if they have the

exact same fields and types. Maintaining all distinct schemas could be expensive if there

were many of them - in theory every document in a bucket could have a different schema

- but in practice most business data follows regular patterns and there aren't many

distinct schemas. Sample values for each field are maintained to help users understand

a field's format, though long values are truncated to 32 bytes to save space. When

two identical schemas are combined, the sample values for each are combined, up to a

specified maximum (by default at most 5 sample values are stored). INFER also keeps

track of the number of distinct documents matching each schema.

https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/infer.html

64

•	 Once all distinct schemas are found, similar schemas are merged into schema "flavors".

Two schemas are considered similar if the fraction of shared top-level fields is greater

than the "similarity_metric" (default 0.6). If a field is a simple type, it is considered shared

if both schemas have a field with the same name and type. If a field has an object type,

then the similarity is considered recursively on the subtypes. If you set the similarity_

metric to 0, then all schemas are merged into a single, universal-relation-like schema. At

the other extreme, a similarity metric of 1.0 would mean that each distinct schema would

become its own flavor. Flavors are different from schemas in one important way: with a

schema, a field is either present or not. With a flavor, a field can be present some of the

time, thus flavors keep track of the frequency that each field appears.

•	 Each flavor is described using a JSON document whose format is an extension of the draft

IETF standard for JSON schemas (http://json-schema.org). The extensions add fields for

describing sample values and how often each field is found.

Let's look at an example: the output of INFER for the 'beer-sample' bucket. Note how this is an

array of flavors, each flavor following the json-schema format. At the top level each flavor has a

"#docs" field which indicates how many documents from the sample matched this flavor. In the

schema description, each field has a name and type, and also "#docs" and "%docs" indicating

how often the field occurred. Sample values are also included for each field.

[
 [
 {
 "#docs": 807,
 "$schema": "http://json-schema.org/schema#",
 "Flavor": "type = \"beer\"",
 "properties": {
 "abv": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 5,
 5.4,
 0,
 4.9,
 8
],
 "type": "number"
 },
 "brewery_id": {
 "#docs": 807,
 "%docs": 100,

http://json-schema.org/

65

 "samples": [
 "limburg_beer_company",
 "caldera_brewing",
 "western_reserve_brewing",
 "anchor_brewing",
 "traquair_house_brewery"
],
 "type": "string"
 },
 "category": {
 "#docs": 593,
 "%docs": 73.48,
 "samples": [
 "North American Lager",
 "North American Ale",
 "British Ale",
 "Irish Ale",
 "Other Style"
],
 "type": "string"
 },
 "description": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 "Westmalle Dubbel is a dark, re...",
 "A conundrum in the world of be...",
 "Black, smooth and easy to drin...",
 "A true German-style Kölsch. O...",
 ""
],
 "type": "string"
 },
 "ibu": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 0,
 41,
 30,
 38,

66

 35
],
 "type": "number"
 },
 "name": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 "Witbier",
 "Dry Hop Orange",
 "Cloud Nine Witbier",
 "Anchor Steam",
 "Jacobite Ale"
],
 "type": "string"
 },
 "srm": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 0,
 12.5,
 47,
 35,
 45
],
 "type": "number"
 },
 "style": {
 "#docs": 593,
 "%docs": 73.48,
 "samples": [
 "American-Style Lager",
 "American-Style Amber/Red Ale",
 "American-Style Pale Ale",
 "American-Style Stout",
 "Classic English-Style Pale Ale"
],
 "type": "string"
 },
 "type": {

67

 "#docs": 807,
 "%docs": 100,
 "samples": [
 "beer"
],
 "type": "string"
 },
 "upc": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 0,
 7
],
 "type": "number"
 },
 "updated": {
 "#docs": 807,
 "%docs": 100,
 "samples": [
 "2010-07-22 20:00:20",
 "2011-07-23 20:37:34",
 "2011-08-15 11:46:53",
 "2011-05-17 03:19:48",
 "2011-02-16 12:38:43"
],
 "type": "string"
 }
 }
 },
 {
 "#docs": 193,
 "$schema": "http://json-schema.org/schema#",
 "Flavor": "type = \"brewery\"",
 "properties": {
 "address": {
 "#docs": 193,
 "%docs": 100,
 "items": {
 "#schema": "FieldType",
 "subtype": null,

68

 "type": "string"
 },
 "maxItems": 1,
 "minItems": 0,
 "samples": [
 [
 "7556 Pine Road"
],
 [
 "Val Dieu 225"
],
 [
 "6 Chapel Close"
],
 [
 "210 Swanson Avenue"
],
 [
 "808 West Main Street"
]
],
 "type": "array"
 },
 "city": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "Arena",
 "Aubel",
 "South Stoke",
 "Lake Havasu City",
 "Ashland"
],
 "type": "string"
 },
 "code": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "53503",
 "",

69

 "86403",
 "54806",
 "94019"
],
 "type": "string"
 },
 "country": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "United States",
 "Belgium",
 "United Kingdom",
 "Canada",
 "Denmark"
],
 "type": "string"
 },
 "description": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "Since firing up its brew kettl...",
 "(512) Brewing Company is a mic...",
 "An artisanal (non-conglomerate...",
 "Tröegs Brewing Company was es...",
 ""
],
 "type": "string"
 },
 "geo": {
 "#docs": 175,
 "%docs": 90.67,
 "properties": {
 "accuracy": {
 "#docs": 175,
 "%docs": 100,
 "samples": [
 "RANGE_INTERPOLATED",
 "GEOMETRIC_CENTER",
 "ROOFTOP",

70

 "APPROXIMATE"
],
 "type": "string"
 },
 "lat": {
 "#docs": 175,
 "%docs": 100,
 "samples": [
 43.1706,
 50.7046,
 51.5462,
 34.4686,
 46.5872
],
 "type": "number"
 },
 "lon": {
 "#docs": 175,
 "%docs": 100,
 "samples": [
 -89.9324,
 5.822,
 -1.1355,
 -114.341,
 -90.8921
],
 "type": "number"
 }
 },
 "samples": [
 {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 43.1706,
 "lon": -89.9324
 },
 {
 "accuracy": "GEOMETRIC_CENTER",
 "lat": 50.7046,
 "lon": 5.822
 },
 {

71

 "accuracy": "RANGE_INTERPOLATED",
 "lat": 51.5462,
 "lon": -1.1355
 },
 {
 "accuracy": "ROOFTOP",
 "lat": 34.4686,
 "lon": -114.341
 },
 {
 "accuracy": "ROOFTOP",
 "lat": 46.5872,
 "lon": -90.8921
 }
],
 "type": "object"
 },
 "name": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "Lake Louie Brewing",
 "Brasserie de l'Abbaye Val-Dieu",
 "Ridgeway Brewing",
 "Mudshark Brewing",
 "South Shore Brewery"
],
 "type": "string"
 },
 "phone": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "1-608-753-2675",
 "32-087-68-75-87",
 "44-(01491)-873474",
 "1-928-453-2981",
 "1-715-682-9199"
],
 "type": "string"
 },

72

 "state": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "Wisconsin",
 "Lige",
 "Oxford",
 "Arizona",
 "Brabant Wallon"
],
 "type": "string"
 },
 "type": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "brewery"
],
 "type": "string"
 },
 "updated": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "2010-07-22 20:00:20",
 "2010-12-13 19:30:01"
],
 "type": "string"
 },
 "website": {
 "#docs": 193,
 "%docs": 100,
 "samples": [
 "http://www.jenningsbrewery.co....",
 "http://www.mudsharkbrewingco.c...",
 "http://512brewing.com/",
 "http://www.darkhorsebrewery.co...",
 ""
],
 "type": "string"
 }

73

 }
 }
]
]

The format for running the INFER command is as follows:

INFER [WITH { "parameter" : value, ... }]

The most common parameters are:

•	 sample_size - how many documents to use when inferring schemas (default 1000).

•	 num_sample_values - how many sample values to retain for each field (default 5).

•	 similarity_metric - how similar two schemas must be to be merged into the same flavor

(default 0.6).

For example, to INFER schemas for beer-sample using a random sample of 2000 documents,

and maintaining 10 sample values for each field, you would use:

INFER 'beer-sample' with {"sample_size": 2000, "num_sample_values": 10}

The output from INFER is quite detailed, and can be very useful for:

•	 Learning about what fields exist and their data formats.

•	 Identifying different schema versions, and finding out how many documents exist

for each version.

•	 Data cleaning, identifying fields that are used rarely or that should always be

present but aren't.

It should be noted that INFER, being based on random sampling, is not deterministic: You

will likely get slightly different results each time you run it. You also might not pick up certain

document schemas if they occur too rarely with respect to the specified sample size. On the

whole, however, schema inferencing is a powerful tool to help people understand what schemas

are present in the documents of their schema-flexible data store.

74

Indexing

76

77

INDEXING JSON IN COUCHBASE
Author: Keshav Murthy

Introduction

There are three things important in database systems: performance, performance, performance.

Creating the right index, with the right keys, right order, and right expression is critical to query

performance in any database system. That’s true for Couchbase as well.

We’ve discussed data modeling for JSON and querying on JSON earlier. In this article, we’ll

discuss indexing options for JSON in Couchbase.

Couchbase 4.5 can create two types of indices:

1.	 Standard global secondary index.

2.	 Memory-Optimized global secondary index.

The standard secondary index stores uses the ForestDB storage engine to store the B-Tree

index and keeps the optimal working set of data in the buffer. That means, the total size of the

index can be much bigger than the amount of memory available in each index node.

A memory-optimized index uses a novel lock-free skiplist to maintain the index and keeps 100%

of the index data in memory. A memory-optimized index has better latency for index scans and

can also process the mutations of the data much faster. Both standard and memory-optimized

indexes implement multi-version concurrency control (MVCC) to provide consistent index scan

results and high throughput. During cluster installation, choose the type of index.

The goal is to give you an overview of various indices you create in each of these services so

that your queries can execute efficiently. The goal of this article is not to describe or compare

and contrast these two types of index services. It does not cover the Full Text Index (FTS), in

developer preview now. Another topic not covered by this article is how the index selection is

made for scans and joins.

Let’s take travel-sample dataset shipped with Couchbase 4.5 to walk through this. To try out

these indices, install Couchbase 4.5. On your web console, go to Settings->Sample Buckets to

install travel-sample.

http://sigmod.org/publications/interviews/pdf/p71-column-winslet.pdf
http://planetnosql.blogspot.com/2016/06/keep-calm-and-json.html
http://planetnosql.blogspot.com/2016/07/keep-calm-and-query-json.html

78

Here are the various indices you can create.

●	Primary Index
●	Named primary index
●	Secondary index
●	Composite Secondary Index
●	Functional index
●	Array Index
●	ALL array
●	ALL DISTINCT array
●	Partial Index
●	Adaptive Index
●	Duplicate Indices
●	Covering Index

Background

Couchbase is a distributed database. It supports flexible data model using JSON. Each

document in a bucket will have a user-generated unique document key. This uniqueness is

enforced during insertion of the data.

Here’s an example document.

select meta().id, travel
from 'travel-sample' travel
where type = 'airline' limit 1;
[
 {
 "id": "airline_10",
 "travel": {
 "callsign": "MILE-AIR",
 "country": "United States",
 "iata": "Q5",
 "icao": "MLA",
 "id": 10,
 "name": "40-Mile Air",
 "type": "airline"
 }
 }
]

79

1. Primary Index

create the primary index on 'travel-sample';

The primary index is simply the index on the document key on the whole bucket. The

Couchbase data layer enforces the uniqueness constraint on the document key. The primary

index, like every other index, is maintained asynchronously. The primary index is used for full

bucket scans (primary scans) when the query does not have any filters (predicates) or no other

index or access path can be used.

Here is the metadata for this index:

select * from system:indexes where name = '#primary';
"indexes": {
 "datastore_id": "http://127.0.0.1:8091",
 "id": "f6e3c75d6f396e7d",
 "index_key": [],
 "is_primary": true,
 "keyspace_id": "travel-sample",
 "name": "#primary",
 "namespace_id": "default",
 "state": "online",
 "using": "gsi"
 }

The metadata gives you additional information on the index: Where the index resides

(datastore_id), its state (state) and the indexing method (using).

2. Named Primary Index

CREATE PRIMARY INDEX 'def_primary' ON 'travel-sample'

You can also name the primary index. The rest of the features of the primary index are the

same, except the index is named. A good side effect of this is that you can have multiple

primary indices in the system. Duplicate indices help with high availability as well as query load

distribution throughout them. This is true for both primary indices and secondary indices.

select meta().id as documentkey, 'travel-sample' airline
from 'travel-sample'
where type = 'airline' limit 1;
 {
 "airline": {
 "callsign": "MILE-AIR",
 "country": "United States",
 "iata": "Q5",

80

 "icao": "MLA",
 "id": 10,
 "name": "40-Mile Air",
 "type": "airline"
 },
 "documentkey": "airline_10"
 }

3. Secondary Index

The secondary index is an index on any key-value or document-key. This index can be any key

within the document. The key can be of any time: scalar, object, or array. The query has to use

the same type of object for the query engine to exploit the index.

CREATE INDEX travel_name ON 'travel-sample'(name);
name is a simple scalar value.
{ "name": "Air France" }
CREATE INDEX travel_geo on 'travel-sample'(geo);

geo is an object embedded within the document. Example:
 "geo": {
 "alt": 12,
 "lat": 50.962097,
 "lon": 1.954764
 }

Creating indexes on keys from nested objects is straightforward.

CREATE INDEX travel_geo on 'travel-sample'(geo.alt);
CREATE INDEX travel_geo on 'travel-sample'(geo.lat);

Schedule is an array of objects with flight details. This indexes on the complete array. Not

exactly useful unless you’re looking for the whole array.

CREATE INDEX travel_schedule ON 'travel-sample'(schedule);

Example:

"schedule": [
 {
 "day": 0,
 "flight": "AF198",
 "utc": "10:13:00"
 },
 {

81

 "day": 0,
 "flight": "AF547",
 "utc": "19:14:00"
 },
 {
 "day": 0,
 "flight": "AF943",
 "utc": "01:31:00"
 },
 {
 "day": 1,
 "flight": "AF356",
 "utc": "12:40:00"
 },
 {
 "day": 1,
 "flight": "AF480",
 "utc": "08:58:00"
 },
 {
 "day": 1,
 "flight": "AF250",
 "utc": "12:59:00"
 }
]

4. Composite Secondary Index

It’s common to have queries with multiple filters (predicates). So, you want the indices with

multiple keys so the indices can return only the qualified document keys. Additionally, if a query

is referencing only the keys in the index, the query engine will simply answer the query from the

index scan result without going to the data nodes. This is a commonly exploited performance

optimization.

CREATE INDEX travel_info ON 'travel-sample'(name, type, id, icoo, iata);

Each of the keys can be a simple scalar field, object, or an array. For the index filtering to be

exploited, the filters have to use respective object type in the query filter. The keys to the

secondary indices can include document keys (meta().id) explicitly if you need to filter on it in

the index.

82

5. Functional Index

It’s common to have names in the database with a mix of upper and lower cases. When you

need to search, "John," you want it to search for any combination of "John," "john," etc. Here’s

how you do it.

CREATE INDEX travel_cxname ON 'travel-sample'(LOWER(name));

Provide the search string in lowercase and the index will efficiently search for already

lowercased values in the index.

EXPLAIN SELECT * FROM 'travel-sample' WHERE LOWER(name) = "john";
{
 "#operator": "IndexScan",
 "index": "travel_cxname",
 "index_id": "2f39d3b7aac6bbfe",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"john\""
],
 "Inclusion": 3,
 "Low": [
 "\"john\""
]
 }
 }
],

You can use complex expressions in this functional index.

CREATE INDEX travel_cx1 ON 'travel-sample'(LOWER(name),
 length*width, round(salary));

6. Array Index

JSON is hierarchical. At the top level, it can have scalar fields, objects, or arrays. Each object

can nest other objects and arrays. Each array can have other objects and arrays. And so on. The

nesting continues.

When you have this rich structure, here’s how you index a particular array, or a field within

the sub-object.

83

Consider the array, schedule:

schedule:
[
 {
 "day" : 0,
 "special_flights" :
 [
 {
 "flight" : "AI111", "utc" : "1:11:11"
 },
 {
 "flight" : "AI222", "utc" : "2:22:22"
 }
]
 },
 {
 "day": 1,
 "flight": "AF552",
 "utc": "14:41:00"
 }
]
CREATE INDEX travel_sched ON 'travel-sample'
(ALL DISTINCT ARRAY v.day FOR v IN schedule END)

This index key is an expression on the array to clearly reference only the elements needed to be

indexed. schedule the array we’re dereferencing into. v is the variable we’ve implicitly declared

to reference each element/object within the array: schedule v.day refers to the element within

each object of the array schedule.

The query below will exploit the array index.

EXPLAIN SELECT * FROM 'travel-sample'
WHERE ANY v IN SCHEDULE SATISFIES v.day = 2 END;
{
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "travel_sched",
 "index_id": "db7018bff5f10f17",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [

84

 {
 "Range": {
 "High": [
 "2"
],
 "Inclusion": 3,
 "Low": [
 "2"
]
 }
 }
],
 "using": "gsi"
 }

Because the key is a generalized expression, you get the flexibility to apply additional logic and

processing on the data before indexing. For example, you can create functional indexing on

elements of each array. Because you’re referencing individual fields of the object or element

within the array, the index creation, size, and search are efficient. The index above stores

only the distinct values within an array. To store all elements of an array in an index, use the

DISTINCT modifier to the expression.

CREATE INDEX travel_sched ON 'travel-sample'
 (ALL ARRAY v.day FOR v IN schedule END)

7. Partial Index

So far, the indices we’ve created will create indices on the whole bucket. Because the

Couchbase data model is JSON and JSON schema are flexible, an index may not contain entries

to documents with absent index keys. That’s expected. Unlike relational systems, where each

type of row is in a distinct table, Couchbase buckets can have documents of various types.

Typically, customers include a type field to differentiate distinct types.

{
 "airline": {
 "callsign": "MILE-AIR",
 "country": "United States",
 "iata": "Q5",
 "icao": "MLA",
 "id": 10,
 "name": "40-Mile Air",
 "type": "airline"

85

 },
 "documentkey": "airline_10"
 }

When you want to create an index of airline documents, you can simply add the type field for

the WHERE clause of the index.

CREATE INDEX travel_info ON 'travel-sample'(name, id, icoo, iata)
WHERE type = 'airline';

This will create an index only on the documents that have (type = ‘airline’). In your queries,

you’d need to include the filter (type = ‘airline’) in addition to other filters so this index qualifies.

You can use complex predicates in the WHERE clause of the index. Various use cases to exploit

partial indexes are:

1.	 Partitioning a large index into multiple indices using the mod function.

2.	 Partitioning a large index into multiple indices and placing each index into distinct indexer

nodes.

3.	 Partitioning the index based on a list of values. For example, you can have an index for

each state.

4.	 Simulating index range partitioning via a range filter in the WHERE clause. One thing to

remember is Couchbase N1QL queries will use one partitioned index per query block. Use

UNION ALL to have a query exploit multiple partitioned indices in a single query.

8. Adaptive Index

Adaptive index creates a single index on the whole document or set of fields in a document.

This is a form or array index using {"key":value} pair as the single index key. The purpose is to

avoid the bane of query having to match the leading keys of the index in traditional indexes.

There are two advantages with Adaptive index:

•	 Multiple predicates on the keyspace can be evaluated using different sections of the same

index.

•	 Avoid creating multiple indexes just to reorder the index keys.

•	 Avoid the index key-order.

86

Example:

 CREATE INDEX 'ai_self'
 ON 'travel-sample'(DISTINCT PAIRS(ai_self))
 WHERE type = "airport";

 EXPLAIN SELECT * FROM 'travel-sample'
 WHERE faa = "SFO" AND 'type' = "airport";

 {
 "#operator": "IntersectScan",
 "scans": [
 {
 "#operator": "IndexScan2",
 "index": "ai_self",
 "index_id": "c564a55225d9244c",
 "index_projection": {
 "primary_key": true
 },
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "[\"faa\", \"SFO\"]",
 "inclusion": 3,
 "low": "[\"faa\", \"SFO\"]"
 }
]
 }
],
 "using": "gsi"
 }
...

The same index can be used for queries with other predicates as well. This reduces the number

of indexes you’d need to create as the document grows.

EXPLAIN SELECT * FROM 'travel-sample'
 WHERE city = "Seattle" AND 'type' = "airport";

87

Considerations for usage:

1.	 Since each attribute field has an index entry, the size of the indexes can be huge.

2.	 Adaptive index is an array index. It’s bound by the restriction of the array indexes.

Please see the detailed documentation on adaptive index at Couchbase documentation.

9. Duplicate Index

This isn’t really a special type of index, but a feature of Couchbase indexing. You can create

duplicate indexes with distinct names.

CREATE INDEX i1 ON 'travel-sample'(LOWER(name),id, icoo)
WHERE type = 'airline';
CREATE INDEX i2 ON 'travel-sample'(LOWER(name),id, icoo)
WHERE type = 'airline';
CREATE INDEX i3 ON 'travel-sample'(LOWER(name),id, icoo)
WHERE type = 'airline';

All three indices have identical keys, identical WHERE clause; Only difference is the name of the

indices. You can choose their physical location using the WITH clause of the CREATE INDEX.

During query optimization, query will choose one of the names. You see that in your plan.

During query runtime, these indices are used in round-robin fashion to distribute the load. This

gives you scale-out, multi-dimensional scaling, performance, and high availability. Not bad!

10. Covering Index

Index selection for a query solely depends on the filters in the WHERE clause of your query.

After the index selection is made, the engine analyzes the query to see if it can be answered

using only the data in the index. If it does, query engine skips retrieving the whole document.

This is a performance optimization to consider while designing the indices.

Summary

Let’s put together a partitioned composite functional array index now!

CREATE INDEX travel_all ON 'travel-sample'(
iata,
LOWER(name),
UPPER(callsign),
ALL DISTINCT ARRAY p.model FOR p IN jets END),
TO_NUMBER(rating),
meta().id
) WHERE LOWER(country) = "united states" AND type = "airline";

https://developer.couchbase.com/documentation/server/5.0/n1ql/n1ql-language-reference/adaptive-indexing.html#untitled1

88

References

•	 Nitro: A Fast, Scalable In-Memory Storage Engine for NoSQL Global Secondary Index :

http://vldb2016.persistent.com/industrial_track_papers.php

•	 Couchbase: http://www.couchbase.com

•	 Couchbase Documentation: http://docs.couchbase.com

http://vldb2016.persistent.com/industrial_track_papers.php
https://www.couchbase.com

89

DESIGNING INDEX FOR QUERY IN
COUCHBASE N1QL
Author: Sitaram Vemulapalli

Put simply: Every flight has a flight plan. Every query has a query plan. The performance and

efficiency of a query depend on its plan. The N1QL query engine prepares the query plan for

each query. N1QL uses a rule-based optimizer. The creation and selection of the right index have

a major influence on both performance and efficiency.

This article will walk through the step-by-step process of how to create an index and modify the

query for optimal performance.

We’ll use travel-sample dataset shipped with Couchbase. Install travel-sample shipped with

Couchbase 4.5.1, then drop all of the indexes to start with a clean slate.

DROP INDEX 'travel-sample'.def_city;
DROP INDEX 'travel-sample'.def_faa;
DROP INDEX 'travel-sample'.def_icao;
DROP INDEX 'travel-sample'.def_name_type;
DROP INDEX 'travel-sample'.def_airportname;
DROP INDEX 'travel-sample'.def_schedule_utc;
DROP INDEX 'travel-sample'.def_type;
DROP INDEX 'travel-sample'.def_sourceairport;
DROP INDEX 'travel-sample'.def_route_src_dst_day;
DROP INDEX 'travel-sample'.def_primary;

We will walk through the step-by-step process and create the index for the following query. In

this query, we’re looking to get airlines in the United States with an id between zero and 1000,

ordered by id. We’re interested in the 10 airlines, ordered by id and skipping the first five.

SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
AND country = "United States"
AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;

90

Step 1: Using Primary Index

The primary index is the simplest index, indexing all of the documents in `travel-sample`. Any

query can exploit the primary index to execute the query.

CREATE PRIMARY INDEX ON 'travel-sample';
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;
{
 "results": [
 {
 "country": "United States",
 "id": 149,
 "name": "Air Cargo Carriers"
 },
 {
 "country": "United States",
 "id": 210,
 "name": "Airlift International"
 },
 {
 "country": "United States",
 "id": 281,
 "name": "America West Airlines"
 },
 {
 "country": "United States",
 "id": 282,
 "name": "Air Wisconsin"
 },
 {
 "country": "United States",
 "id": 287,
 "name": "Allegheny Commuter Airlines"
 },
 {

91

 "country": "United States",
 "id": 295,
 "name": "Air Sunshine"
 },
 {
 "country": "United States",
 "id": 315,
 "name": "ATA Airlines"
 },
 {
 "country": "United States",
 "id": 397,
 "name": "Arrow Air"
 },
 {
 "country": "United States",
 "id": 452,
 "name": "Atlantic Southeast Airlines"
 },
 {
 "country": "United States",
 "id": 659,
 "name": "American Eagle Airlines"
 }
]
}
EXPLAIN
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;
 "~children": [
 {
 "#operator": "PrimaryScan",
 "index": "def_primary",
 "keyspace": "travel-sample",
 "namespace": "default",

92

 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "keyspace": "travel-sample",
 "namespace": "default"
 }
]

While the query plan tells you indexes selected and predicates pushed down, it won’t tell you

the amount of work (index items scanned, documents fetched) to execute the query.

SELECT * FROM system:completed_requests;
 {
 "completed_requests": {
 "elapsedTime": "1.356536722s",
 "errorCount": 0,
 "node": "127.0.0.1:8091",
 "phaseCounts": {
 "fetch": 31591,
 "primaryScan": 31591,
 "sort": 33
 },
 "phaseOperators": {
 "authorize": 1,
 "fetch": 1,
 "primaryScan": 1,
 "sort": 2
 },
 "remoteAddr": "127.0.0.1:50293",
 "requestId": "cc1d9531-fe8c-4c20-a0ca-46ba0c7f4137",
 "requestTime": "2017-08-08 08:23:09.951975403 -0700 PDT",
 "resultCount": 10,
 "resultSize": 1153,
 "scanConsistency": "unbounded",
 "serviceTime": "1.356506403s",
 "state": "completed",
 "statement": "SELECT country, id, name FROM 'travel-sample' WHERE
type = \"airline\" AND country = \"United States\" AND id BETWEEN 0 AND 1000 OR-
DER BY id LIMIT 10 OFFSET 5;",

93

 "userAgent": "Go-http-client/1.1 (godbc/1.7.0-N1QL)",
 "users": "Administrator"
 }
 }

The travel-sample bucket has the following type of documents.

Primary Index Scan gets all the item keys from the index and the query engine fetches the items,

applies the predicate, sorts the results, and then paginates to produces 10 items.

Query engine processed 31591 items to produce 10 items.

Step 2: Using Secondary Index

Let’s create a secondary index on type.

CREATE INDEX ts_ix1 ON 'travel-sample'(type);
EXPLAIN
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
 AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;
{
.......
 "~children": [

Type of document Count

airline 187

airport 1968

route 24024

landmark 4495

hotel 917

total 3591

94

 {
 "#operator": "IndexScan2",
 "index": "ts_ix1",
 "index_id": "426296b9c85cbcf0",
 "index_projection": {
 "primary_key": true
 },
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "\"airline\"",
 "inclusion": 3,
 "low": "\"airline\""
 }
]
 }
],
 "using": "gsi"
 }

]
........
}

The query uses a secondary index and pushes type predicate down to indexer. This results

in 187 items.

id and country predicates are not pushed down to the indexer; they are applied after

fetching the items.

95

Step 3: Using Composite Index on All Attributes in Query
Predicates

Let’s drop the index created in the previous step and create a composite index based on type,

id, and country.

DROP INDEX 'travel-sample'.ts_ix1;
CREATE INDEX ts_ix1 ON 'travel-sample'(type, id, country);
EXPLAIN
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
 AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;
{
........
 "~children": [
 {
 "#operator": "IndexScan2",
 "index": "ts_ix1",
 "index_id": "5132f7842dc3dbdd",
 "index_projection": {
 "primary_key": true
 },
 "keyspace": "travel-sample",
 "limit": "10",
 "namespace": "default",
 "offset": "5",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "\"airline\"",
 "inclusion": 3,
 "low": "\"airline\""
 },
 {
 "high": "1000",

96

 "inclusion": 3,
 "low": "0"

 },
 {
 "high": "\"United States\"",
 "inclusion": 3,
 "low": "\"United States\""
 }
]
 }
],
 "using": "gsi"
 }

]
........
}

The query uses a composite index and pushes all the predicates down to indexer. All the three

predicates pushed exactly to indexer.

This index has airport, route, landmark, and hotel items as well. We can restrict the index only to

airline items.

Step 4: Using Partial Composite Index

Let’s drop the index created in the previous step and create a partial composite index.

DROP INDEX 'travel-sample'.ts_ix1;
CREATE INDEX ts_ix1 ON 'travel-sample'(id, country) WHERE type = "airline";
EXPLAIN
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
 AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;
{
........
 "~children": [

97

 {
 "#operator": "IndexScan2",
 "index": "ts_ix1",
 "index_id": "130220ca1dd4571d",
 "index_projection": {
 "primary_key": true
 },
 "keyspace": "travel-sample",
 "limit": "10",
 "namespace": "default",
 "offset": "5",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "1000",
 "inclusion": 3,
 "low": "0"
 },
 {
 "high": "\"United States\"",
 "inclusion": 3,
 "low": "\"United States\""

 }
]
 }
],
 "using": "gsi"
 }

]
........
}

This index has only items that have type = "airline."

98

Index condition (type = "airline") is equality predicate, so it is not required to include it in the

index keys.

This makes the index lean and makes it perform better by reducing I/O, memory, CPU, and

network.

It pushes all the predicates down to the indexer. This results in 10 items.

Step 5: Using Covering Partial Composite Index

The query uses type, id, country, and name.

The type is part of the index condition as equality predicate and N1QL can derive the type value

from the index condition and answer the query.

The id and country are index keys.

The only missing attribute is a name. Let’s add it as trailing index key.

Let’s drop the index created in the previous step and create a covering partial composite index.

DROP INDEX 'travel-sample'.ts_ix1;
CREATE INDEX ts_ix1 ON 'travel-sample'(id, country,name) WHERE type = "airline";
EXPLAIN
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
 AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;
{
 "requestID": "2f0223a1-a632-416c-b1bc-ae684a3445db",
 "signature": "json",
 "results": [
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan2",

99

 "covers": [
 "cover (('travel-sample'.'id'))",
 "cover (('travel-sample'.'country'))",
 "cover (('travel-sample'.'name'))",
 "cover ((meta('travel-sample').'id'))"
],
 "filter_covers": {
 "cover (('travel-sample'.'type'))": "airline"
 },
 "index": "ts_ix1",
 "index_id": "efb465334587e963",
 "index_projection": {
 "entry_keys": [
 0,
 1,
 2
]
 },
 "keyspace": "travel-sample",
 "limit": "10",
 "namespace": "default",
 "offset": "5",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "1000",
 "inclusion": 3,
 "low": "0"
 },
 {
 "high": "\"United States\"",
 "inclusion": 3,
 "low": "\"United States\""
 }
]
 }
],
 "using": "gsi"
 },

100

 {
 "#operator": "Parallel",
 "maxParallelism": 1,
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "(((cover (('travel-sam-
ple'.'type')) = \"airline\") and (cover (('travel-sample'.'country')) = \"United
States\")) and (cover (('travel-sample'.'id')) between 0 and 1000))"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "cover (('travel-sam-
ple'.'country'))"
 },
 {
 "expr": "cover (('travel-sam-
ple'.'id'))"
 },
 {
 "expr": "cover (('travel-sam-
ple'.'name'))"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 {
 "#operator": "Limit",
 "expr": "10"
 }

101

]
 },
 "text": "SELECT country, id, name FROM 'travel-sample' WHERE type =
\"airline\" AND country = \"United States\" AND id BETWEEN 0 AND 1000 ORDER BY id
LIMIT 10 OFFSET 5;"
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "4.057527ms",
 "executionTime": "4.029496ms",
 "resultCount": 1,
 "resultSize": 4627
 }
}

The query uses covering partial index and pushes all the predicates down to the indexer. This

results in 10 items.

The index has all the information required by the query.

Query avoids fetch and answers from the index scan.

This query is called a Covered Query and the index is called Covering Index.

Step 6: Query Exploit Index Order

Index stores data pre-sorted by the index keys. When the ORDER BY list matches the INDEX

keys list order left to right, the query can exploit index order.

Query ORDER BY expressions match index keys from left to right.

The query doesn’t have any JOINs, GROUP BY, or other clauses that can change the order

or granularity of items produced by indexer, then query can exploit index order and avoid

expensive sort.

The EXPLAIN (step 5) will not have an Order section.

102

Step 7: OFFSET, LIMIT Pushdown to Indexer

Providing pagination hints (OFFSET, LIMIT) to indexer. This tells indexer maximum items it

should produce. This reduces unnecessary work by indexer and Query Engine, helping to scale.

OFFSET, LIMIT can be pushed down to the indexer:

•	 When the query does not have ORDER BY clause OR query uses index order.

•	 When exact predicates are pushed down to the indexer and the Query Engine will not

eliminate any documents (i.e., no false positives from indexer).

When OFFSET, LIMIT is pushed to indexer, the EXPLAIN (step 5) will have a "limit", "offset" in

the IndexScan section.

Final Query and Index

CREATE INDEX ts_ix1 ON 'travel-sample'(id, country, name) WHERE type = "airline";
SELECT country, id, name
FROM 'travel-sample'
WHERE type = "airline"
AND country = "United States"
 AND id BETWEEN 0 AND 1000
ORDER BY id
LIMIT 10
OFFSET 5;

Summary

While designing the index, explore all index options. Include as many query predicates as

possible in the leading index keys (equality, IN, less than, (less than or equal), greater than,

(greater than or equal)), followed by other attributes used in your query. Explore if you can use

Index order and pushed down of pagination values to index. Use partial indexes to focus your

queries on the relevant data.

103

JOIN FASTER WITH COUCHBASE INDEX JOINS
Author: Keshav Murthy

Good features in a query language help you to optimize the data model, save space, and

increase performance.

Normally, you’d have a child table pointing to its parent. For example, orders have the

document key of the customer. So, starting with orders, you join customers to have the fully

joined document, which can be processed further.

To get the list of orders by zip code, you write the following query:

SELECT c.C_ZIP, COUNT(o.O_ID)
FROM ORDERS AS o LEFT OUTER JOIN CUSTOMER AS c
 ON KEYS o.O_CUSTOMER_KEY
GROUP BY c.C_ZIP
ORDER BY COUNT(1) desc;

This works like a charm. Let’s look at the query plan.

We use the primary index on ORDERS to do the full scan. For each document there, try to

find the matching CUSTOMER document by using the ORDERS.O_CUSTOMER_KEY as the

document key. After the JOIN, grouping, aggregation, and sorting follows.

104

[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "PrimaryScan",
 "index": "#primary",
 "keyspace": "ORDERS",
 "namespace": "default",
 "using": "gsi"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Fetch",
 "as": "o",
 "keyspace": "ORDERS",
 "namespace": "default"
 },
 {
 "#operator": "Join",
 "as": "c",
 "keyspace": "CUSTOMER",
 "namespace": "default",
 "on_keys": "('o'.'O_CUSTOMER_KEY')",
 "outer": true
 },
 {
 "#operator": "InitialGroup",
 "aggregates": [
 "count(('o'.'O_ID'))",
 "count(1)"
],
 "group_keys": [

105

 "('c'.'C_ZIP')"
]
 }
]
 }
 },
 {
 "#operator": "IntermediateGroup",
 "aggregates": [
 "count(('o'.'O_ID'))",
 "count(1)"
],
 "group_keys": [
 "('c'.'C_ZIP')"
]
 },
 {
 "#operator": "FinalGroup",
 "aggregates": [
 "count(('o'.'O_ID'))",
 "count(1)"
],
 "group_keys": [
 "('c'.'C_ZIP')"
]
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('c'.'C_ZIP')"
 },
 {
 "expr": "count(('o'.'O_ID'))"
 }
]

106

 }
]
 }
 }
]
 },
 {
 "#operator": "Order",
 "sort_terms": [
 {
 "desc": true,
 "expr": "count(1)"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 },
 "text": "SELECT c.C_ZIP, COUNT(o.O_ID)\nFROM ORDERS AS o LEFT OUTER JOIN
CUSTOMER AS c\n ON KEYS o.O_CUSTOMER_KEY\nGROUP BY c.C_ZIP\nORDER BY
COUNT(1) desc;"
 }
]

But what if you’re interested in California (CA) residents only? Simply add a predicate on the

C_STATE field.

SELECT c.C_ZIP, COUNT(o.O_ID)
FROM ORDERS AS o LEFT OUTER JOIN CUSTOMER AS c
 ON KEYS o.O_CUSTOMER_KEY
WHERE c.C_STATE = "CA"
GROUP BY c.C_ZIP
ORDER BY COUNT(1) desc;

This works, except we end up scanning all of the orders, whether the orders belong to California

or not. Only after the JOIN operation do we apply the C_STATE = "CA" filter. In a large data set,

this has negative performance impact. What if we could improve the performance by limiting

the amount of data accessed on the ORDERS bucket.

107

This is exactly what the index JOINs feature will help you do. The alternate query is below.

SELECT c.C_ZIP, COUNT(o.O_ID)
FROM CUSTOMER AS c LEFT OUTER JOIN ORDERS AS o
 ON KEY o.O_CUSTOMER_KEY FOR c
WHERE c.C_STATE = "CA"
GROUP BY c.C_ZIP
ORDER BY COUNT(1) desc;

You do need an index on ORDERS.O_CUSTOMER_KEY.

To further improve the performance, you can create the index on CUSTOMER.C_STATE.

CREATE INDEX idx_okey ON ORDERS(O_CUSTOMER_KEY);

With these indexes, you get a plan like the following:

CREATE INDEX idx_cstate ON CUSTOMER(C_STATE);

Let’s examine the explanation. We use two indexes idx_cstate, which scans the CUSTOMER

with the predicate (C_STATE = "CA"), and then idx_okey, which helps to find the matching

document in ORDERS.

[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "idx_cstate",
 "index_id": "a3a663ec9928d888",
 "keyspace": "CUSTOMER",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"CA\""
],
 "Inclusion": 3,
 "Low": [

108

 "\"CA\""
]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Fetch",
 "as": "c",
 "keyspace": "CUSTOMER",
 "namespace": "default"
 },
 {
 "#operator": "IndexJoin",
 "as": "o",
 "for": "c",
 "keyspace": "ORDERS",
 "namespace": "default",
 "on_key": "('o'.'O_CUSTOMER_KEY')",
 "outer": true,
 "scan": {
 "index": "idx_okey",
 "index_id": "271ea96d9390e10d",
 "using": "gsi"
 }
 },
 {
 "#operator": "Filter",
 "condition": "(('c'.'C_STATE') = \"CA\")"
 },
 {
 "#operator": "InitialGroup",
 "aggregates": [
 "count(('o'.'O_ID'))",
 "count(1)"

109

],
 "group_keys": [
 "('c'.'C_ZIP')"
]
 }
]
 }
 },
 {
 "#operator": "IntermediateGroup",
 "aggregates": [
 "count(('o'.'O_ID'))",
 "count(1)"
],
 "group_keys": [
 "('c'.'C_ZIP')"
]
 },
 {
 "#operator": "FinalGroup",
 "aggregates": [
 "count(('o'.'O_ID'))",
 "count(1)"
],
 "group_keys": [
 "('c'.'C_ZIP')"
]
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('c'.'C_ZIP')"
 },
 {
 "expr": "count(('o'.'O_ID'))"

110

 }
]
 }
]
 }
 }
]
 },
 {
 "#operator": "Order",
 "sort_terms": [
 {
 "desc": true,
 "expr": "count(1)"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 },
 "text": "SELECT c.C_ZIP, COUNT(o.O_ID)\nFROM CUSTOMER AS c LEFT OUTER JOIN
ORDERS AS o\n ON KEY o.O_CUSTOMER_KEY FOR c\nWHERE c.C_STATE = \"CA\"\
nGROUP BY c.C_ZIP\nORDER BY COUNT(1) desc;"
 }
]

So, how does this plan execute? Let’s look at the visual version of this.

111

We first initiate the index scan on CUSTOMER.idx_state and pushdown the filter (c.C_

STATE = "CA"). Index scan returns a list of qualified customers. In this case, the CUSTOMER

document key is "1.10.1938." We retrieve the CUSTOMER document, then initiate the index

scan on ORDERS.idx_okey with the predicate on the CUSTOMER document key (ORDERS.O_

CUSTOMER_KEY = "1.10.1938"). That scan returns the document key of the ORDERS, "1.10.143."

Comparing plan 1 with plan 2, the plan to uses two indices to minimize the amount of data to

retrieve and process. It, therefore, performs faster.

The index JOIN feature is composable. You can use index JOIN as part of any of JOIN

statements to help you navigate through your data model. For example:

SELECT c.C_ZIP, COUNT(o.O_ID), COUNT(ol.OL_ORDER_ITEMS)
FROM CUSTOMER AS c LEFT OUTER JOIN ORDERS AS o
 ON KEY o.O_CUSTOMER_KEY FOR c
 INNER JOIN ORDER_LINE ol
 ON KEYS o.O_OL_ORDER_KEY
WHERE c.C_STATE = "CA"
GROUP BY c.C_ZIP
ORDER BY COUNT(1) desc;

Try it yourself. I’ve given examples you can try out yourself on Couchbase 4.5 using the

beer-sample dataset shipped with it. Check out the slides here.

Summary

Index joins help you to join tables from parent-to-child even when the parent document does

not have a reference to its children documents. You can use this feature with INNER JOINS and

LEFT OUTER JOINS. This feature is composable. You can have a multi-join statement, with only

some of them exploiting index joins.

https://www.slideshare.net/journalofinformix/extended-join-in-couchbase-server-45

112

113113

A COUCHBASE INDEX TECHNIQUE FOR LIKE
PREDICATES WITH WILDCARD

Author: Tai Tran

I have a query below where I want to find all documents in the travel-sample bucket having the

airport name containing the string "Washington."

 SELECT airportname from 'travel-sample'
 where
 airportname LIKE "%Washington%"
 AND type = "airport"

This is a classic problem with most of the RDBMS systems where these systems can’t use the

index when a LIKE predicate has a leading wildcard i.e. leading %. Elsewhere in this article, I will

refer to the query above as the "slow query." I am pleased to tell you that help is on the way

with Couchbase release 4.5.1, where this problem can be solved with a combination of the new

SUFFIXES() function and Array Index.

Note: To follow along with the examples in this article, please refer to the setup instructions as

given here to install the travel-sample Couchbase bucket.

SUFFIXES() is a N1QL function that generates all suffixes of an input string. For example, the

N1QL statement below:

select SUFFIXES("Baltimore Washington Intl")

That returns an array of suffixes:

[
 "Baltimore Washington Intl",
 "altimore Washington Intl",
 "ltimore Washington Intl",
 "timore Washington Intl",
 "imore Washington Intl",
 "more Washington Intl",
 "ore Washington Intl",
 "re Washington Intl",
 "e Washington Intl",
 " Washington Intl",
 "Washington Intl",
 "ashington Intl",
 "shington Intl",
 "hington Intl",

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/indexing-arrays.html
https://developer.couchbase.com/documentation/server/current/settings/install-sample-buckets.html

114

 "ington Intl",
 "ngton Intl",
 "gton Intl",
 "ton Intl",
 "on Intl",
 "n Intl",
 " Intl",
 "Intl",
 "ntl",
 "tl",
 "l"
]

By applying the SUFFIXES() function on the airportname attribute of the documents of type

‘airport,’ Couchbase generates an array of suffixes for each document. You can then create

an array index on the suffixes arrays and rewrite the query to leverage such index. Here is an

example:

•	 Create an array index on the suffixes of the airportname attribute :

create index suffixes_airport_name on 'travel-sample'(
 DISTINCT ARRAY array_element FOR array_element IN SUFFIXES(LOWER(airport-
name)) END)
 WHERE type = "airport";

•	 The "slow query" can be rewritten to use the suffixes_airport_name index and returns all

the documents containing the airportname suffix, starting with ‘washington%.’ It is worth

noting that in this re-written query the LIKE predicate no longer needs the leading %

wildcard because the matching criterion is on the suffixes.

select airportname from 'travel-sample'
where
 ANY array_element IN SUFFIXES(LOWER(airportname)) SATISFIES array_element LIKE
'washington%' END
and type="airport";
the query returns
[
 {
 "airportname": "Ronald Reagan Washington Natl"
 },
 {
 "airportname": "Washington Dulles Intl"
 },
 {

115

 "airportname": "Baltimore Washington Intl"
 },
 {
 "airportname": "Washington Union Station"
 }
]

The elapsed time for this rewritten query is roughly 25ms when executed on my small VM

cluster, and it is 10 times faster compared to the elapsed time of the original "slow query." I am

including a portion of the explain plan to confirm that the rewritten query uses the array index.

[
 {
 ...
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "suffixes_airport_name",
 "index_id": "6fc9785d59a93892",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"washingtoo\""
],
 "Inclusion": 1,
 "Low": [
 "\"washington\""
]
 }
 }
],
 "using": "gsi"
 }
 }

]

116

A common application of such a query is when an end user enters a partial searching string

in a UI search field, e.g. searching for an airport name. After the end user has entered a few

characters, the logic behind the search field issues the query and displays the matches returned

as a drop-down picklist (much like what you see when you enter search terms in Google).

Readers should be aware that the longer the input string, the longer the list of suffixes and,

therefore, the index on suffixes can be large. I recommend using this technique only on short

attributes, which belong to small Reference Data collections, such as Airport, Hotel, Product

Catalog, etc.

If your documents have multi-value attribute(s) such as SKILLS, TAGS as shown in the sample

document below, I recommend using the SPLIT() function instead of SUFFIXES().

candidate: {
 name: "John Doe",
 skills: "JAVA,C,NodeJS,SQL",
}

Below is a simple example of SPLIT(). When it is invoked with an input string of comma-

separated words, it will return an array of words.

SELECT SPLIT("JAVA,C,NodeJS,SQL", ",")

The select returns:

[
 {
 "$1": [
 "JAVA",
 "C",
 "NodeJS",
 "SQL"
]
 }
]

By creating an array index on these arrays of words, your application should be able to support

word search. You should try this out yourself to see how it works.

If you have documents with long text attributes such as "Description", TOKENS() function is

more suitable for parsing text paragraphs into individual words. The TOKENS() function is not

available in our current GA release but will be soon.

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/stringfun.html

Optimization

118

119

A DEEP DIVE INTO COUCHBASE N1QL QUERY
OPTIMIZATION
Authors: Keshav Murthy, Sitaram Vemulapalli

SQL is the declarative language for manipulating data in a relational database system. N1QL

is the declarative language for JSON data and metadata. Similar to SQL, N1QL has DML

statements to manipulate JSON data: SELECT, INSERT, UPDATE, DELETE, MERGE, EXPLAIN.

It also introduces a new statement, INFER, which samples the data to describe the schema and

show data samples.

Execution of a N1QL query by the engine involves multiple steps. Understanding these will help

you to write queries, design for performance, tune query engine efficiently. The N1QL query

engine includes parser, semantic analyzer, optimizer and executor. This article will describe how

the N1QL query optimizer creates the query plan.

Life of a Query: Overview

Applications and their drivers submit the N1QL query to one of the available query nodes in the

Couchbase cluster. The query node analyzes the query, uses metadata on underlying objects to

to create the execution plan, executes it. During execution, the query node orchestrates with

index and data nodes to perform the select-join-nest-unnest-project operations.

https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-language-reference/infer.html

120

Inside a Query Node

Within each query service, the query flows through the different stages shown below. The

N1QL parser checks for syntactic correctness, and the semantic analyzer ensures that the query

is meaningful. The N1QL optimizer takes the parsed tree as input, selects suitable indexes,

selects access paths for each object and then creates the query plan. It’s from this plan that an

execution tree with all the necessary operators is created. The execution tree is then executed

to manipulate the data, project query results.

N1QL Query Optimizer

Every flight has a flight plan before it takes off. Each flight has many options for its route. But,

depending on guidelines, weather, best practices, and regulations, they decide on a specific

flight plan.

Every N1QL query has a query plan. Just like a flight plan, each query can be executed in many

ways — different indexes to choose, different predicates to push down, different orders of joins,

etc. Eventually, the N1QL query engine will choose an access path in each case and come up

with the plan. This plan is converted to query execution tree. This stage of query execution is

called optimization.

The figure below shows all the possible phases a query goes through during execution to return

the results. Not all queries need to go through every phase. Some go through many of these

phases multiple times. Optimizer decides phases each queries executes. For example, the Sort

phase will be skipped when there is no ORDER BY clause in the query; the scan-fetch-join phase

executes multiple times to perform multiple joins.

121

Some operations, like query parsing and planning, are done serially — denoted by a single block

in the figure. Operations like fetch, join, or sort are done in parallel — denoted by multiple blocks

in the figure.

N1QL optimizer analyzes the query and comes up with available access path options for each

keyspace in the query. The planner needs to first select the access path for each keyspace,

determine the join order and then determine the type of the join. This is done for each query

block. Once the plans are done for all the query blocks, the execution is created.

The query below has two keyspaces, airline and airport:

 SELECT airline, airport
 FROM 'travel-sample' airline
 INNER JOIN 'travel-sample airport
 ON KEYS airline.airport_id
 WHERE airline.type = 'airline'

 AND airport.type = 'airports'

Access Path Selection

Keyspace (Bucket) access path options:

1.	 Keyscan access: When specific document IDs (keys) are available, the Keyscan access

method retrieves those documents. Any filters on that keyspace are applied on those

documents. The Keyscan can be used when a keyspace is queried by specifying the

document keys (USE KEYS modifier) or during join processing. The Keyscan is commonly

used to retrieve qualifying documents on for the inner keyspace during join processing.

122

2.	 PrimaryScan access: This is equivalent of a full table scan in relational database systems.

This method is chosen when documents IDs are not given and no qualifying secondary

indexes are available for this keyspace. N1QL will retrieve all of document IDs from the

primary index, fetch the document and then do the predicate-join-project processing.

This access method is quite expensive and the average time to return results increases

linearly with number of documents in the bucket. Many customers use primary scan while

developing the application, but drop the primary index altogether during production

deployment. Couchbase or N1QL does not require the primary index as long as the query

has a viable index to access the data.

3.	 IndexScan access: A qualifying secondary index scan is used to first filter the keyspace

and to determine the qualifying documents IDs. It then retrieves the qualified documents

from the data store, if necessary. If the selected index has all the data to answer the

query, N1QL avoids fetching the document altogether — this method is called the covering

index scan. This is highly performant. Your secondary indexes should help queries choose

covering index scans as much as possible.

In Couchbase, the secondary index can be a standard global secondary index using ForestDB or

Memory Optimized Index (MOI).

Index Selection

Here is the approach to select the secondary indexes for the query. The N1QL planner

determines qualified indexes on the keyspace based on query predicates. The following is the

algorithm to select the indexes for a given query.

•	 Online indexes: Only online indexes are selected. That means when the indexes are being

built (pending) or only defined, but not built, they aren’t chosen.

•	 Preferred indexes: When a statement has the USE INDEX clause, it provides the list of

indices to consider. In this case, only those indices are evaluated. If the preferred indexes

are not qualified other online indexes are considered.

•	 Satisfying index condition: Partial indexes (when the index creation includes the WHERE

clause) with a condition that is a superset of the query predicate are selected.

•	 Satisfying index keys: Indexes whose leading keys satisfy query predicate are selected.

This is the common way to select indexes with B-TREE indexes.

•	 Longest satisfying index keys: Redundancy is eliminated by keeping longest satisfying

index keys in the index key order. For example, Index with satisfying keys (a, b, c) is

retained over index with satisfying (a, b).

123

Once the index selection is done the following scan methods are considered in the order.

1.	 IndexCountScan

•	 Queries with a single projection of COUNT aggregate, NO JOINs, or GROUP BY are

considered. The chosen index needs to be covered with a single exact range for the

given predicate, and the argument to COUNT needs to be constant or leading key.

2.	 Covering secondary scan

•	 Each satisfied index with the most number of index keys is examined for query

coverage, and the shortest covering index will be used. For an index to cover the

query, we should be able to run the complete query just using the data in the index.

In other words, the index needs to have both keys in the predicate as well as the keys

referenced in other clauses, e.g., projection, subquery, order by, etc.

3.	 Regular secondary scan

•	 Indexes with the most number of matching index keys are used. When more than one

index is qualified, IntersectScan is used. To avoid IntersectScan, provide a hint with

USE INDEX.

4.	 UNNEST Scan

•	 Only array indexes with an index key matching the predicates are used for UNNEST

scan.

5.	 Regular primary scan

•	 If a primary scan is selected, and no primary index available, the query errors out.

JOIN Methods

N1QL supports nested loop access method for all the join supports: INNER JOIN and LEFT

OUTER JOIN and the index join method.

Here is the simplest explanation of the join method.

For this join, ORDERS become the outer keyspace and CUSTOMER becomes the inner keyspace.

The ORDERS keyspace is scanned first (using one of the keyspace scan options). For each

qualifying document on ORDERS, we do a KEYSCAN on CUSTOMER based on the key O_C_D in

the ORDERS document.

 SELECT *
 FROM ORDERS o INNER JOIN CUSTOMER c ON KEYS o.O_C_ID;

https://dzone.com/articles/join-faster-with-couchbase-index-joins

124

Index Join

Index joins help you to join tables from parent-to-child even when the parent document does

not have a reference to its children documents. You can use this feature with INNER JOINS and

LEFT OUTER JOINS. This feature is composable. You can have a multi-join statement, with only

some of them exploiting index joins.

 SELECT c.C_ZIP, COUNT(o.O_ID)
 FROM CUSTOMER AS c LEFT OUTER JOIN ORDERS AS o
 ON KEY o.O_CUSTOMER_KEY FOR c
 WHERE c.C_STATE = "CA"
 GROUP BY c.C_ZIP
 ORDER BY COUNT(1) desc;

Read more information on index joins here.

JOIN Order

The keyspaces specified in the FROM clause are joined in the exact order given in the query.

N1QL does not change the join order.

We use the following keyspaces in our examples. CUSTOMER, ORDER, ITEM, and ORDERLINE.

Example documents for these are given at the end of this blog. Those familiar with TPCC will

recognize these tables. The figure below illustrates the relationship between these documents.

Each of these keyspaces has a primary key index and following secondary indices.

https://dzone.com/articles/join-faster-with-couchbase-index-joins

125

 create index CU_ID_D_ID_W_ID on CUSTOMER(C_ID, C_D_ID, C_W_ID) using gsi;
 create index ST_W_ID,I_ID on STOCK(S_I_ID, S_W_ID) using gsi;
 create index OR_O_ID_D_ID_W_ID on ORDERS(O_ID, O_D_ID, O_W_ID, O_C_ID) using gsi;
 create index OL_O_ID_D_ID_W_ID on ORDER_LINE(OL_O_ID, OL_D_ID, OL_W_ID) using gsi;
 create index IT_ID on ITEM(I_ID) using gsi;

Example 1

If you know the document keys, specify with the USE KEYS clause for each keyspace. When a

USE KEYS clause is specified, the KEYSCAN access path is chosen. Given the keys, KEYSCAN

will retrieve the documents from the respective nodes more efficiently. After retrieving the

specific documents, the query node applies the filter c.C_STATE = "CA".

cbq> EXPLAIN select * from CUSTOMER c
 USE KEYS ["110192", "120143", "827482"]
 WHERE c.C_STATE = "CA";
{
 "requestID": "991e69d2-b6f9-42a1-9bd1-26a5468b0b5f",
 "signature": "json",
 "results": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "KeyScan",
 "keys": "[\"110192\", \"120143\", \"827482\"]"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Fetch",
 "as": "c",
 "keyspace": "CUSTOMER",
 "namespace": "default"
 },
 {
 "#operator": "Filter",
 "condition": "(('c'.'C_STATE') = \"CA\")"
 },

126

 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "star": true
 }
]
 },
...

Example 2

In this case, the query is looking to count all of all customers with (c.C_YTD_PAYMENT < 100).

Since we don’t have an index on key-value, c.C_YTD_PAYMENT, a primary scan of the keyspace

(bucket) is chosen. Filter (c.C_YTD_PAYMENT < 100) is applied after the document is retrieved.

Obviously, for larger buckets primary scan takes time. As part of planning for application

performance, create relevant secondary indices on frequently used key-values within the filters.

N1QL parallelizes many of the phases within the query execution plan. For this query, fetch and

filter applications are parallelized within the query execution.

cbq> EXPLAIN SELECT c.C_STATE AS state, COUNT(*) AS st_count
 FROM CUSTOMER c
 WHERE c.C_YTD_PAYMENT < 100
 GROUP BY state
 ORDER BY st_count desc;
 "results": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "PrimaryScan",
 "index": "#primary",
 "keyspace": "CUSTOMER",
 "namespace": "default",
 "using": "gsi"
 },
 {
 "#operator": "Parallel",
 "~child": {

127

 "#operator": "Sequence",

 "~children": [

 {

 "#operator": "Fetch",

 "as": "c",
 "keyspace": "CUSTOMER",
 "namespace": "default"
 },
 {
 "#operator": "Filter",
 "condition": "(('c'.'C_YTD_PAYMENT') \
u003c 100)"
 },
 {
 "#operator": "InitialGroup",
 "aggregates": [
 "count(*)"
],
 "group_keys": [
 "('c'.'state')"
]
 },
 {
 "#operator": "IntermediateGroup",
 "aggregates": [
 "count(*)"
],
 "group_keys": [
 "('c`.'state')"
]
 }
]
 }
 },
 {
 "#operator": "IntermediateGroup",
 "aggregates": [
 "count(*)"

],

 "group_keys": [

 "('c'.'state')"

128

]
 },
 {
 "#operator": "FinalGroup",
 "aggregates": [
 "count(*)"
],
 "group_keys": [
 "('c'.'state')"
]
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "as": "state",
 "expr": "('c'.'C_STATE')"
 },
 {
 "as": "st_count",
 "expr": "count(*)"
 }
]
 }
]
 }
 }
]
 },
 {
 "#operator": "Order",
 "sort_terms": [
 {
 "desc": true,
 "expr": "'st_count'"
 }

129

]
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "FinalProject"
 }
 }
]
 }

],

Example 3

In this example, we join keyspace ORDER_LINE with ITEM. For each qualifying document in

ORDER_LINE, we want to match with ITEM. The ON clause is interesting. Here, you only specify

the keys for the key space ORDER_LINE (TO_STRING(ol.OL_I_ID)) and nothing for ITEM. That’s

because it’s implicitly joined with the document key of the ITEM.

N1QL’s FROM clause:

 SELECT ol.*, i.*
 FROM ORDER_LINE ol INNER JOIN ITEM i
 ON KEYS (TO_STRING(ol.OL_I_ID))
Is equivalent to SQL’s:

In N1QL, META(ITEM).id is the document key of the particular document in ITEM.

SELECT ol.*, i.*
 FROM ORDER_LINE ol INNER JOIN ITEM i
 ON (TO_STRING(ol.OL_I_ID) = meta(ITEM).id)

If the field is not a string, it can be converted to a string using TO_STRING() expression. You can

also construct the document key using multiple fields with the document.

SELECT *
FROM ORDERS o LEFT OUTER JOIN CUSTOMER c

 ON KEYS (TO_STRING(o.O_C_ID) || TO_STRING(o.O_D_ID))

To summarize, while writing JOIN queries in N1QL, it’s important to understand how the

document key is constructed on the keyspace. It’s important to think about these during

data modeling.

130

First, to scan the ORDER_LINE keyspace, for the given set of filters, the planner chooses the

index scan on the index OL_O_ID_D_ID_W_ID. As we discussed before, the access path on the

other keyspace in the join is always keyscan using the primary key index. In this plan, we first

do the index scan on the ORDER_LINE keyspace pushing down the possible filters to the index

scan. Then, we retrieve the qualifying document and apply additional filters. If the document

qualifies, that document is then joined with ITEM.

	 cbq> EXPLAIN SELECT COUNT(DISTINCT(ol.OL_I_ID)) AS CNT_OL_I_ID

 FROM ORDER_LINE ol INNER JOIN ITEM i
 ON KEYS (TO_STRING(ol.OL_I_ID))
 WHERE ol.OL_W_ID = 1
 AND ol.OL_D_ID = 10
 AND ol.OL_O_ID < 200
 AND ol.OL_O_ID >= 100
 AND ol.S_W_ID = 1
 AND i.I_PRICE < 10.00;
{
 "requestID": "b419b086-1c41-4467-ad7e-47a1d625afdd",
 "signature": "json",
 "results": [
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan2",
 "index": "OL_O_ID_D_ID_W_ID",
 "index_id": "7e193fc03dba9557",
 "index_projection": {
 "primary_key": true
 },
 "keyspace": "ORDER_LINE",
 "namespace": "default",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "200",
 "inclusion": 1,
 "low": "100"
 },
 {
 "high": "10",
 "inclusion": 3,
 "low": "10"
 },

131

 {
 "high": "1",
 "inclusion": 3,
 "low": "1"
 }
]
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "as": "ol",
 "keyspace": "ORDER_LINE",
 "namespace": "default"
 },
 {
 "#operator": "Join",
 "as": "i",
 "keyspace": "ITEM",
 "namespace": "default",
 "on_keys": "to_string(('ol`.'OL_I_ID'))"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "((((((('ol'.'OL_W_ID') = 1) and
((`ol'.'OL_D_ID') = 10)) and (('ol'.'OL_O_ID') < 200)) and (100 <= ('ol'.'OL_O_
ID'))) and (('ol'.'S_W_ID') = 1)) and (('i'.'I_PRICE') < 10))"
 },
 {
 "#operator": "InitialGroup",
 "aggregates": [
 "count(distinct ('ol'.'OL_I_ID'))"
],
 "group_keys": []
 }
]
 }
 },
 {
 "#operator": "IntermediateGroup",
 "aggregates": [
 "count(distinct ('ol'.'OL_I_ID'))"
],

132

 "group_keys": []
 },
 {
 "#operator": "FinalGroup",
 "aggregates": [
 "count(distinct ('ol'.'OL_I_ID'))"
],
 "group_keys": []
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "as": "CNT_OL_I_ID",
 "expr": "count(distinct ('ol'.'OL_I_
ID'))"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 "text": "SELECT COUNT(DISTINCT(ol.OL_I_ID)) AS CNT_OL_I_ID FROM OR-
DER_LINE ol INNER JOIN ITEM i ON KEYS (TO_STRING(ol.OL_I_ID)) WHERE ol.OL_W_ID = 1
AND ol.OL_D_ID = 10 AND ol.OL_O_ID < 200 AND ol.OL_O_ID >= 100 AND ol.S_W_ID = 1
AND i.I_PRICE < 10.00;"
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "6.531028ms",
 "executionTime": "6.495724ms",
 "resultCount": 1,
 "resultSize": 4741
 }
}

133

Example Documents

Data is generated from modified scripts from here.

CUSTOMER:

select meta(CUSTOMER).id as PKID, * from CUSTOMER limit 1;
 "results": [
 {
 "CUSTOMER": {
 "C_BALANCE": -10,
 "C_CITY": "ttzotwmuivhof",
 "C_CREDIT": "GC",
 "C_CREDIT_LIM": 50000,
 "C_DATA":
"sjlhfnvosawyjedregoctclndqzioadurtnlslwvuyjeowzedlvypsudcuerdzvdpsvjfe-
couyavnyyemivgrcyxxjsjcmkejvekzetxryhxjlhzkzajiaijammtyioheqfgtbhekdisjypxoymfs-
aepqkzbitdrpsjppivjatcwxxipjnloeqdswmogstqvkxlzjnffikuexjjofvhxdzleymajmifgzzdbd-
fvpwuhlujvycwlsgfdfodhfwiepafifbippyonhtahsbigieznbjrmvnjxphzfjuedxuklntghfckflji-
jfeyznxvwhfvnuhsecqxcmnivfpnawvgjjizdkaewdidhw",
 "C_DELIVERY_CNT": 0,
 "C_DISCOUNT": 0.3866,
 "C_D_ID": 10,
 "C_FIRST": "ujmduarngl",
 "C_ID": 1938,
 "C_LAST": "PRESEINGBAR",
 "C_MIDDLE": "OE",
 "C_PAYMENT_CNT": 1,
 "C_PHONE": "6347232262068241",
 "C_SINCE": "2015-03-22 00:50:42.822518",
 "C_STATE": "ta",
 "C_STREET_1": "deilobyrnukri",
 "C_STREET_2": "goziejuaqbbwe",
 "C_W_ID": 1,
 "C_YTD_PAYMENT": 10,
 "C_ZIP": "316011111"
 },
 "PKID": "1101938"
 }
],

ITEM:

select meta(ITEM).id as PKID, * from ITEM limit 1;
 "results": [
 {
 "ITEM": {
 "I_DATA": "dmnjrkhncnrujbtkrirbddknxuxiyfabopmhx",

https://github.com/apavlo/py-tpcc

134

 "I_ID": 10425,
 "I_IM_ID": 1013,
 "I_NAME": "aegfkkcbllssxxz",
 "I_PRICE": 60.31
 },
 "PKID": "10425"
 }
],

ORDERS:

select meta(ORDERS).id as PKID, * from ORDERS limit 1;
 "results": [
 {
 "ORDERS": {
 "O_ALL_LOCAL": 1,
 "O_CARRIER_ID": 2,
 "O_C_ID": 574,
 "O_D_ID": 10,
 "O_ENTRY_D": "2015-03-22 00:50:44.748030",
 "O_ID": 1244,
 "O_OL_CNT": 12,
 "O_W_ID": 1
 },
 "PKID": "1101244"
 }
],

ORDER_LINE:

cbq> select meta(ORDER_LINE).id as PKID, * from ORDER_LINE limit 1;
"results": [
 {
 "ORDER_LINE": {
 "OL_AMOUNT": 0,
 "OL_DELIVERY_D": "2015-03-22 00:50:44.836776",
 "OL_DIST_INFO": "oiukbnbcazonubtqziuvcddi",
 "OL_D_ID": 10,
 "OL_I_ID": 23522,
 "OL_NUMBER": 3,
 "OL_O_ID": 1389,
 "OL_QUANTITY": 5,
 "OL_SUPPLY_W_ID": 1,
 "OL_W_ID": 1
 },
 "PKID": "11013893"
 }
],

135

UNDERSTANDING INDEX SCANS IN COUCHBASE
N1QL QUERY
Author: Sitaram Vemulapalli

Couchbase N1QL is a modern query processing engine designed to provide SQL for JSON on

distributed data with a flexible data model. Modern databases are deployed on massive clusters.

Using JSON provides a flexible data mode. N1QL supports enhanced SQL for JSON to make

query processing easier.

Applications and database drivers submit the N1QL query to one of the available Query nodes

on a cluster. The Query node analyzes the query, uses metadata on underlying objects to figure

out the optimal execution plan, which it then executes. During execution, depending on the

query, using applicable indexes, query node works with index and data nodes to retrieve and

perform the planned operations. Because Couchbase is a modular clustered database, you scale

out data, index, and query services to fit your performance and availability goals.

Query Execution: Inside View

This figure shows all the possible phases a SELECT query goes through to return the results. Not

all queries need to go through every phase, some go through many of these phases multiple

times. For example, sort phase can be skipped when there is no ORDER BY clause in the query;

scan-fetch-join phase will execute multiple times for correlated subqueries.

https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/index.html

136

This brief introduction to query planning has details of query planner. When the Index path is

chosen, query engine requests the scan by providing the range of values to return. This range is

represented as a SPAN in the query plan. The index spans will play major roles in optimal plan

generation and execution. In this article, we discuss how the Index spans are generated from the

query predicates (filters).

Spans Overview

FILTER, JOIN, and PROJECT are fundamental operations of database query processing. The

filtering process takes the initial keyspace and produces an optimal subset of the documents

the query is interested in. To produce the smallest possible subset, indexes are used to apply as

many predicates as possible.

Query predicate indicates the subset of the data interested. During the query planning phase,

we select the indexes to be used. Then, for each index, we decide the predicates to be applied

by each index. The query predicates are translated into spans in the query plan and passed to

Indexer. Spans simply express the predicates in terms of data ranges.

https://blog.couchbase.com/sql-for-documents-n1ql-brief-introduction-to-query-planning/

137

Example Translations

Predicate Span Low Span High Span Inclusion

id = 10 10 10 3 (BOTH)

id > 10 10 no upper bound 0 (NEITHER)

id <= 10 null 10 2 (HIGH)

Consider the plan for the query below:

	 EXPLAIN select meta().id from 'travel-sample' where id = 10;

The spans can be seen as part of IndexScan section of the explain for the query:

	 EXPLAIN select meta().id from 'travel-sample' where id = 10;
	 {
	 "requestID": "698b665d-8f42-4e26-b381-f4b98dc8fa3f",
	 "signature": "json",
	 "results": [
	 {
	 "plan": {
	 "#operator": "Sequence",
	 "~children": [
	 {
	 "#operator": "IndexScan2",
	 "covers": [
	 "cover (('travel-sample'.'id'))",
	 "cover ((meta('travel-sample').'id'))"
],
	 "index": "idx_id",
	 "index_id": "3ebb43b488c351c5",
	 "keyspace": "travel-sample",
	 "namespace": "default",
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 3,
	 "low": "10"

138

	 }
]
	 }
],
	 "using": "gsi"
	 },
	 {
	 "#operator": "Parallel",
	 "~child": {
	 "#operator": "Sequence",
	 "~children": [
	 {
	 "#operator": "Filter",
	 "condition": "(cover (('travel-sam
	 ple'.'id')) = 10)"
	 },
	 {
	 "#operator": "InitialProject",
	 "result_terms": [
	 {
	 "expr": "cover ((meta('travel-sam
	 ple').'id'))"
	 }
]
	 },
	 {
	 "#operator": "FinalProject"
	 }
]
	 }
	 }
]
	 },
	 "text": "select meta().id from 'travel-sample' where id = 10;"
	 }
]
	 }

139

In N1QL, index scan requests are based on range. So, the index spans consists of one or more

ranges. Each range will have start value, end value and whether to include the start or end value.

•	 "high" field of range indicates the end value. If high is missing, then there is no

upper bound.

•	 "low" field of range indicates start value. If low is missing, the scan starts with MISSING.

•	 Inclusion indicates values of low or high included.

Inclusion	 Meaning

0 NEITHER Neither low nor high included

1 LOW low included

2 HIGH high included

3 BOTH Both low and high included

To run the examples Install travel-sample sample bucket and create the following indexes.

	 CREATE INDEX 'idx_id' ON 'travel-sample'('id');
	 CREATE INDEX 'idx_name' ON 'travel-sample'('name');
	 CREATE INDEX 'idx_saiport_dairport_stops' ON 'travel-sample' ('sourceairport',
	 'destinationairport', 'stops');
	 CREATE INDEX idx_sched ON 'travel-sample'(DISTINCT ARRAY v.day FOR v IN schedule
	 END) WHERE type = "route";

Example 1: EQUALITY Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id = 10;

In this example, the predicate id = 10 pushed to index scan.

Span range for low high inclusion

id = 10 10 10 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id = 10;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",

http://developer.couchbase.com/documentation/server/current/settings/install-sample-buckets.html

140

	 "inclusion": 3,
	 "low": "10"
	 }
]
	 }
]

Example 2: Inclusive One-Sided Range Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id >= 10;

In this example, the predicate id >= 10 pushed to index scan.

Span range for low high inclusion

id >= 10 10 unbounded 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id >= 10;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "inclusion": 1,
	 "low": "10"
	 }
]
	 }
]

141

Example 3: Exclusive One-Sided Range Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id > 10;

In this example, the predicate id > 10 pushed to index scan.

Span range for low high inclusion

id > 10 10 unbounded 0 (NEITHER)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id > 10;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "inclusion": 0,
	 "low": "10"
	 }
]
	 }
]

Example 4: Inclusive One-sided Range Predicate

	 SELECT meta().id FROM 'travel-sample` WHERE id <= 10;

In this example, the predicate id <= 10 pushed to index scan. The query predicate doesn't

contain an explicit start value, when the field is present in predicate it is implicit non-null values.

So it is implicit the start value will be non-inclusive null value.

Span range for low high inclusion

id <= 10 null 10 2 (HIGH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id <= 10;
	

	 "spans": [
	 {

142

	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 2,
	 "low": "null"
	 }
]
	 }
]

Example 5: Exclusive One-Sided Range Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id < 10;

In this example, the predicate id < 10 pushed to index scan. The query predicate doesn’t contain

explicit start value, when the field is present in predicate it is implicit non-null values. So it is

implicit the start value will be non-inclusive null value.

Span range for low high inclusion

id < 10 null 10 0 (NEITHER)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id < 10;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 0,
	 "low": "null"
	 }
]
	 }
]

143

Example 6: AND Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id >= 10 AND id < 25;

In this example, the predicate id >= 10 AND id < 25 pushed to index scan.

Span range for low high inclusion

id >= 10 AND id < 25 10 25 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id >=10 AND id < 25;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "25",
	 "inclusion": 1,
	 "low": "10"
	 }
]
	 }
]

Example 7: Multiple AND Predicates

	 SELECT meta().id FROM 'travel-sample' WHERE id >= 10 AND id < 25 AND id <= 20;

In this example, the predicate id >= 10 AND id < 25 AND id <= 20 pushed to index scan.

Span range for low high inclusion

id >= 10 AND id < 25

AND id <= 20

10 20 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id >=10 AND id < 25 AND id

	 <= 20;

	 "spans": [
	 {

144

	 "exact": true,
	 "range": [
	 {
	 "high": "20",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 }
]

Observe that optimizer created the span without the (id < 25) because there is an AND

predicate (id <= 20) makes the other predicate redundant.

Internally, optimizer breaks down each predicate and then combines it in a logically consistent

manner. FYI: If this is too detailed for now, you can skip over to Example 8.

Span range for low high inclusion

id >= 10 10 unbounded 1 (LOW)

id < 25 null 25 0 (NEITHER)

id >= 10 AND id < 25 10 25 1 (LOW)

id <= 20 null 20 2 (HIGH)

id >= 10 AND id < 25

AND id <= 20

10 20 3 (BOTH)

1.	 Combined low becomes highest of both low’s (null is lowest).

2.	 Combined high becomes lowest of both high’s (unbounded is highest).

3.	 Combined inclusion becomes OR of corresponding inclusions of step 1 and 2.

4.	 Repeat the steps 1-3 for each AND clause.

Example 8: AND Predicate Makes Empty

	 SELECT meta().id FROM 'travel-sample' WHERE id > 10 AND id < 5;

In this example, the predicate id > 10 AND id < 5 pushed to index scan.

Span range for low high inclusion

id > 10 AND id < 5 null null 0 (NEITHER)

This is a special case. Span will be low: 10, high:5, inclusion:0. In this case, the start value is

higher than the end value and will not produce results, so the span is converted to EMPTY

SPAN. Empty Span will not do any IndexScan.

145

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id >10 AND id < 5;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "null",
	 "inclusion": 0,
	 "low": "null"
	 }
]
	 }
]

Example 9: BETWEEN Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id BETWEEN 10 AND 25;

In this example, the predicate id BETWEEN 10 AND 25 (i.e. id >=10 AND id <=25) pushed to

index scan.

Span range for low high inclusion

id BETWEEN 10 AND

25

10 25 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id BETWEEN 10 AND 25;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "25",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 }
]

146

Example 10: Simple OR Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id = 10 OR id = 20;

In this example, the predicate id = 10 OR id = 20 produce two independent ranges and both of

them are pushed to index scan. Duplicate ranges are eliminated, but overlaps are not eliminated.

Span range for low high inclusion

id = 10 10 10 3 (BOTH)

Id = 20 20 20 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id = 10 OR id = 20;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "20",
	 "inclusion": 3,
	 "low": "20"
	 }
]
	 }
]

147

Example 11: Simple IN Predicate

	 SELECT meta().id FROM `travel-sample' WHERE id IN [10, 20];

In this example, the predicate id IN [10, 20] (i.e. id = 10 OR id = 20) after eliminating duplicates

each element as pushed as a separate range to index scan.

In Couchbase Server 4.5 up to 8192 IN elements are pushed as a separate range to the indexer.

If the number of elements more than 8192 it does full scan on that key.

Span range for low high inclusion

id = 10 10 10 3 (BOTH)

Id = 20 20 20 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id IN [10, 20];

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "20",
	 "inclusion": 3,
	 "low": "20"
	 }
]
	 }
]

148

Example 12: OR, BETWEEN, AND Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE (id BETWEEN 10 AND 25) OR (id > 50
	 AND id <= 60);

In this example, the predicate (id BETWEEN 10 AND 25) OR (id > 50 AND id <= 60) pushed to

index scan.

Span range for low high inclusion

id between 10 and 25 10 25 3 (BOTH)

Id > 50 AND id <= 60 50 60 2 (HIGH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE (id BETWEEN 10 AND 25) OR
	 (id > 50 AND id <= 60);
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "25",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "60",
	 "inclusion": 2,
	 "low": "50"
	 }
]
	 }
]

149

Example 13: NOT Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE id <> 10;

In this example, the predicate id <> 10 is transformed to id < 10 OR id > 10 and pushed to

index scan.

Span range for low high inclusion

id < 10 null 10 0 (NEITHER)

Id > 10 10 unbounded 0 (NEITHER)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id <> 10;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 0,
	 "low": "null"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "inclusion": 0,
	 "low": "10"
	 }
]
	 }
]

Example 14: NOT, AND Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE NOT (id >= 10 AND id < 25);

In this example, the predicate NOT (id >= 10 AND id < 25) is transformed to id < 10 OR id >=25

and pushed to index scan.

150

Span range for low high inclusion

id < 10 null 10 0 (NEITHER)

Id >= 25 25 unbounded 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE NOT (id >= 10 AND id < 25);
	
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 0,
	 "low": "null"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "inclusion": 1,
	 "low": "25"
	 }
]
	 }
]

Example 15: EQUALITY Predicate on String Type

	 SELECT meta().id FROM 'travel-sample' WHERE name = "American Airlines";

In this example, the predicate name = "American Airlines" pushed to index scan.

Span range for low high inclusion

name = "American

Airlines"

"American Airlines" "American Airlines" 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE name = "American Airlines";
	
	 "spans": [

151

	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"American Airlines\"",
	 "inclusion": 3,
	 "low": "\"American Airlines\""
	 }
]
	 }
]

Example 16: Range Predicate on String Type

	 SELECT meta().id FROM 'travel-sample' WHERE name >= "American Airlines" AND name
	 <= "United Airlines";

In this example, the predicate name >= "American Airlines" AND name <= "United

Airlines"pushed to index scan.

Span range for low high inclusion

name >= "American

Airlines" AND name

<= "United Airlines"

"American Airlines" "United Airlines" 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE name >= "American Airlines"
	 AND name <= "United Airlines";

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"United Airlines\"",
	 "inclusion": 3,
	 "low": "\"American Airlines\""
	 }
]
	 }
]

152

Example 17: LIKE Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE name LIKE "American%";

In this example, the predicate name LIKE "American%" is transformed to name >= "American"

AND name < "Americao" (i.e. "Americao" is next N1QL collation order of "American") and

pushed to index scan. In LIKE predicate % means match with any number of any character.

Span range for low high inclusion

name LIKE

"American%"

"American" "Americao" 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE name LIKE "American%";

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"Americao\"",
	 "inclusion": 1,
	 "low": "\"American\""
	 }
]
	 }
]

Example 18: LIKE Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE name LIKE "%American%";

In this example, the predicate name LIKE "%American%" is transformed and pushed to index

scan. In LIKE predicate ‘%’ is leading portion of the string so we can’t push any portion of the

string to indexer. "" is the lowest string. [] is empty array and is greater than every string value

in N1QL collation order.

Span range for low high inclusion

name LIKE

"%American%"

"" "[]" 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE name LIKE "%American%";

	 "spans": [

153

	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "[]",
	 "inclusion": 1,
	 "low": "\"\""
	 }
]
	 }
]

Example 19: AND Predicate With Composite Index

	 SELECT meta().id FROM 'travel-sample' WHERE sourceairport = "SFO" AND
	 destinationairport = "JFK" AND stops BETWEEN 0 AND 2;

In this example, the predicate sourceairport = "SFO" AND destinationairport = "JFK" and stops

BETWEEN 0 AND 2 pushed to index scan.

Span range for low high inclusion

sourceairport = "SFO" "SFO" "SFO" 3 (BOTH)

destinationairport =

"JFK"

"JFK" "JFK" 3 (BOTH)

stops 0 2 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE sourceairport = "SFO" AND
	 destinationairport = "JFK" AND stops BETWEEN 0 AND 2;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"SFO\"",
	 "inclusion": 3,
	 "low": "\"SFO\""
	 },
	 {
	 "high": "\"JFK\"",
	 "inclusion": 3,
	 "low": "\"JFK\""

154

	 },
	 {
	 "high": "2",
	 "inclusion": 3,
	 "low": "0"
	 }
]
	 }
]

Example 20: AND Predicate With Composite Index

	 SELECT meta().id from 'travel-sample'
	 WHERE sourceairport IN ["SFO", "SJC"]
	 AND destinationairport = "JFK"
	 AND stops = 0;

In this example, the predicate sourceairport IN ["SFO", "SJC"] AND destinationairport = "JFK"

AND stops = 0 pushed to index scan.

Span range for low high inclusion

sourceairport IN

["SFO", "SJC"]

"SFO"

"SJC"

"SFO"

"SJC"

3 (BOTH)

destinationairport =

"JFK"

"JFK" "JFK" 3 (BOTH)

stops 0 0 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE sourceairport IN ["SFO",
	 "SJC"] AND destinationairport = "JFK" AND stops = 0;
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"SFO\"",
	 "inclusion": 3,
	 "low": "\"SFO\""
	 },
	 {
	 "high": "\"JFK\"",
	 "inclusion": 3,

155

	 "low": "\"JFK\""
	 },
	 {
	 "high": "0",
	 "inclusion": 3,
	 "low": "0"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"SJC\"",
	 "inclusion": 3,
	 "low": "\"SJC\""
	 },
	 {
	 "high": "\"JFK\"",
	 "inclusion": 3,
	 "low": "\"JFK\""
	 },
	 {
	 "high": "0",
	 "inclusion": 3,
	 "low": "0"
	 }
]
	 }
]
	

156

Example 21: Composite AND Predicate With Trailing Keys Are
Missing in Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE sourceairport = "SFO" AND destina
	 tionairport = "JFK";

In this example, the predicate sourceairport = "SFO" AND destinationairport = "JFK" pushed to

index scan.

Span range for low high inclusion

sourceairport = "SFO" "SFO" "SFO" 3 (BOTH)

destinationairport =

"JFK"

"JFK" "JFK" 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE sourceairport = "SFO" AND
	 destinationairport = "JFK";

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"SFO\"",
	 "inclusion": 3,
	 "low": "\"SFO\""
	 },
	 {
	 "high": "\"JFK\"",
	 "inclusion": 3,
	 "low": "\"JFK\""
	 }
]
	 }
]

157

Example 22: Composite AND Predicate With Unbounded
High of Trailing Key

	 SELECT meta().id FROM 'travel-sample' WHERE sourceairport = "SFO" AND destina
	 tionairport = "JFK" AND stops >= 0;

In this example, the predicate sourceairport = "SFO" AND destinationairport = "JFK" AND stops

>= 0 pushed to index scan.

Span range for low high inclusion

sourceairport = "SFO" "SFO" "SFO" 3 (BOTH)

destinationairport =

"JFK"

"JFK" "JFK" 3 (BOTH)

stops >= 0 0 unbounded 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE sourceairport = "SFO" AND
	 destinationairport = "JFK" AND stops >= 0;
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "\"SFO\"",
	 "inclusion": 3,
	 "low": "\"SFO\""
	 },
	 {
	 "high": "\"JFK\"",
	 "inclusion": 3,
	 "low": "\"JFK\""
	 },
	 {
	 "inclusion": 1,
	 "low": "0"
	 }
]
	 }
]

158

Example 23: Equality Predicate With Query Parameters

	 SELECT meta().id FROM 'travel-sample' WHERE id = $1;

In this example, the predicate id = $1 pushed to index scan.

Span range for low high inclusion

id = $1 $1 $1 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id = $1;
	
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "$1",
	 "inclusion": 3,
	 "low": "$1"
	 }
]
	 }
]

Example 24: AND Predicate With Query Parameters

	 SELECT meta().id FROM 'travel-sample' WHERE id >= $1 AND id < $2;

In this example, the predicate id >= $1 AND id < $2 pushed to index scan.

Span range for low high inclusion

id >= $1 AND id < $2 $1 $2 1 (LOW)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id >= $1 AND id < $2;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "$2",
	 "inclusion": 1,
	 "low": "$1"

159

	 }
]
	 }
]

Example 25: OR Predicate With Query Parameters

	 SELECT meta().id FROM 'travel-sample' WHERE id = $1 OR id < $2;

In this example, the predicate id = $1 OR id < $2 pushed to index scan.

Span range for low high inclusion

id = $1 $1 $1 3 (BOTH)

Id < $2 null $2 0 (NEITHER)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id = $1 OR id < $2;
	 spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "$1",
	 "inclusion": 3,
	 "low": "$1"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "$2",
	 "inclusion": 0,
	 "low": "null"
	 }
]
	 }
]

160

Example 26: IN Predicate With Query Parameters

	 SELECT meta().id FROM 'travel-sample' WHERE id IN [$1, 10, $2] ;

In this example, the predicate id IN [$1, 10, $2] pushed to index scan.

Span range for low high inclusion

id IN [$1, 10, $2] $1

10

$2

$1

10

$2

3 (BOTH)

3 (BOTH)

3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id IN [$1, 10, $2];
	 spans": [
	 {
	 "range": [
	 {
	 "high": "$1",
	 "inclusion": 3,
	 "low": "$1"
	 }
	
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 },
	 {
	 "range": [
	 {
	 "high": "$2",
	 "inclusion": 3,
	 "low": "$2"
	 }
]
	 }

161

Example 27: ANY Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE type = "route" AND
 	 ANY v IN schedule SATISFIES v.day IN [1,2,3] END ;

In this example, the predicate v.day = 0 pushed to ARRAY index scan.

Span range for low high inclusion

v.day = 0 0 0 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE type = "route" AND ANY v IN
	 schedule SATISFIES v.day = 0 END ;

	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "0",
	 "inclusion": 3,
	 "low": "0"
	 }
]
	 }
]

Example 28: ANY Predicate

	 SELECT meta().id FROM 'travel-sample' WHERE type = "route" AND
	 ANY v IN schedule SATISFIES v.day IN [1,2,3] END ;

In this example, the predicate v.day IN [1,2,3] pushed to ARRAY index scan.

Span for Low High Inclusion

v.day IN [1,2,3] 1

2

3

1

2

3

3 (BOTH)

3 (BOTH)

3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE type = "route" AND ANY v IN
	 schedule SATISFIES v.day IN [1,2,3] END ;

	 "spans": [
	 {

162

	 "exact": true,
	 "range": [
	 {
	 "high": "1",
	 "inclusion": 3,
	 "low": "1"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "2",
	 "inclusion": 3,
	 "low": "2"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "3",
	 "inclusion": 3,
	 "low": "3"
	 }
]
	 }
]

Note: The following examples don’t have the right indexes, or the queries need to be modified

to produce an optimal plan.

Example 29: Equality Predicate on Expression

	 SELECT meta().id FROM 'travel-sample' WHERE abs(id) = 10;

In this example, NO predicate is pushed to index scan.

Span range for low high inclusion

id null unbounded 0 (NEITHER)

163

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE abs(id) = 10;

	 "spans": [
	 {
	 "range": [
	 {
	 "inclusion": 0,
	 "low": "null"
	 }
]
	 }
]

The span indicates we are doing a complete index scan, if it is not covered index we fetch the

document from Data node and apply predicate. For better performance create new index

as follows:

	 CREATE INDEX 'idx_absid' ON 'travel-sample'(abs('id'));

When idx_absid is used predicate abs(id) = 10 pushed to index scan.

Span range for low high inclusion

abs(id) = 10 10 10 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE abs(id) = 10;
	
	 "spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "10",
	 "inclusion": 3,
	 "low": "10"
	 }
]
	 }
]

Example 30: Overlapping Predicates

	 SELECT meta().id FROM 'travel-sample' WHERE id <= 100 OR (id BETWEEN 50 AND
	 150);

164

In this example, id <= 100 OR (id between 50 and 150) predicates are pushed to index scan as

two ranges.

Span range for low high inclusion

id <= 100 null 100 2 (HIGH)

Id between 50 and

150

50 150 3 (BOTH)

	 EXPLAIN SELECT meta().id FROM 'travel-sample' WHERE id <= 100 OR (id BETWEEN 50
	 AND 150);
	 spans": [
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "100",
	 "inclusion": 2,
	 "low": "null"
	 }
]
	 },
	 {
	 "exact": true,
	 "range": [
	 {
	 "high": "150",
	 "inclusion": 3,
	 "low": "50"
	 }
]
	 }
]

Summary

When you analyze the explain plan, correlate the predicates in the explain to the spans. Ensure

the most optimal index is selected and the spans have the expected range for all the index keys.

More keys in each span will make the query more efficient.

165

COUNT AND GROUP FASTER WITH N1QL
Author: Keshav Murthy

Humans have counted things for a very long time. In database applications, COUNT() is

frequently used in various contexts. The COUNT performance affects both application

performance and user experience. Keeping this mind, Couchbase supported generalized

COUNT() and has improved its performance in Couchbase 4.5 release.

Two Couchbase 4.5 Features

There are two features in Couchbase 4.5 helping the COUNT performance.

When the query is interested only in the COUNT of a range of data that’s indexed, the indexer

does the counting itself. In other words, the query pushes the counting to the index. This

reduces the amount of data exchanged between indexer and query, improving the query speed.

	 CREATE INDEX idxname ON 'travel-sample' (name);
	 SELECT COUNT(name)
	 FROM 'travel-sample'
	 WHERE name = 'Air Alaska';

First, when all of the predicates can be pushed down to index scan and we know index

scan won’t result in any false positives, the index can simply do the COUNT() of qualifying

values without returning the qualifying data to the query engine. This improves the COUNT

performance. When the COUNT() is pushed to the index scan, the optimizer will denote this by

choosing the IndexCountScan method in the query plan. The qualifying queries benefit directly,

without any effort from the application developer.

The predicate (name = ‘Air Alaska’) is pushed down to the index scan in addition to the

COUNT() aggregate as well.

http://www.storyofmathematics.com/prehistoric.html

166

	 {
	 "#operator": "IndexCountScan",
	 "covers": [
	 "cover (('travel-sample'.'name'))",
	 "cover ((meta('travel-sample').'id'))"
],
	 "index": "ixname",
	 "index_id": "ea81dd71a0a98351",
	 "keyspace": "travel-sample",
	 "namespace": "default",
	 "spans": [
	 {
	 "Range": {
	 "High": [
	 "\"Air Alaska\""
],
	 "Inclusion": 3,
	 "Low": [
	 "\"Air Alaska\""
]
	 }

Second, the optimal execution of the MIN() aggregate when the query is covered and can be

pushed down to index.

	 SELECT MIN(name)
	 FROM 'travel-sample
	 WHERE prodname > ‘Air Alaska';

For this query, the first name that’s greater than "Air Alaska" is determined by the index scan.

Because we’re interested in the just one minimum value and therefore, in the query plan, we

push the {limit:1} parameter to the index scan. This works very quickly compared to getting all

the qualifying values from the index scan to determine the minimum value.

	 {
	 "#operator": "IndexScan",
	 "covers": [
	 "cover (('travel-sample'.'name'))",
	 "cover ((meta('travel-sample').'id'))"
],
	 "index": "ixname",

167

	 "index_id": "ea81dd71a0a98351",
	 "keyspace": "travel-sample",
	 "limit": "1",
	 "namespace": "default",
	 "spans": [
	 {
	 "Range": {
	 "Inclusion": 0,
	 "Low": [
	 "\"Air Alaska\""
]
	 }

Use Cases

Let’s walk through common use cases and how these features work together to speed up many

queries. The examples use travel-sample data set shipped along with Couchbase server.

There are some interesting uses with a little bit of help from the application developer. Since

multiple customers are using this approach, it’s worth checking out if this is going to help you as

well.

Let’s look at common questions and how to improve the performance with Couchbase 4.5.

Use Case 1

What’s the total number of documents in the bucket?

	 cbq> select count(*) from 'travel-sample';
	 {
	 "requestID": "15549343-54ec-44d8-b62a-a4d98445b484",
	 "signature": {
	 "$1": "number"
	 },
	 "results": [
	 {
	 "$1": 31591
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "7.724136ms",
	 "executionTime": "7.693342ms",
	 "resultCount": 1,

168

	 "resultSize": 35
	 }
	 }

Counting of the whole bucket runs in a few milliseconds because we can directly get the total

number of documents directly from the bucket metadata.

	 {
	 "#operator": "CountScan",
	 "keyspace": "travel-sample",
	 "namespace": "default"
	 }

Use Case 2

Let’s see how many document types we have in the travel-sample bucket:

	 > select distinct type from 'travel-sample';
	 {
	 "requestID": "584a7785-95fe-4d4a-b72b-7e161858bf2a",
	 "signature": {
	 "type": "json"
	 },
	 "results": [
	 {
	 "type": "airline"
	 },
	 {
	 "type": "route"
	 },
	 {
	 "type": "hotel"
	 },
	 {
	 "type": "landmark"
	 },
	 {
	 "type": "airport"
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "1.031288771s",

169

	 "executionTime": "1.031253954s",
	 "resultCount": 5,
	 "resultSize": 202
	 }
	 }

One full second for this seems quite expensive. Let’s see the query plan.

	 {
	 "#operator": "PrimaryScan",
	 "index": "def_primary",
	 "keyspace": "travel-sample",
	 "namespace": "default",
	 "using": "gsi"
	 }

To determine the number of distinct items, this plan will scan the whole bucket, which

determines the distinct types. Let’s see how we can improve this.

The MIN() optimization in Couchbase 4.5 can be exploited to optimize this. We can evaluate

if the field is the leading key of any index, as the index has pre-sorted data. Using this, we can

write a small script to calculate the distinct values much faster.

Step 1

Get the first entry in the index.

	 SELECT MIN(type)
	 FROM 'travel-sample'
	 WHERE type IS NOT MISSING;
	 {
	 "results": [
	 {
	 "$1": "airline"
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "15.050713ms",
	 "executionTime": "15.023588ms",
	 "resultCount": 1,
	 "resultSize": 39
	 }
	 }

170

The Query Plan shows that this is done by index scan only. The scan parameter "limit": "1" shows

why we get the results so fast. Because the index stores data in a sorted order, the first item will

be the lowest value.

	 {
	 "#operator": "IndexScan",
	 "covers": [
	 "cover (('travel-sample'.'type'))",
	 "cover ((meta('travel-sample').'id'))"
],
	 "index": "def_type",
	 "index_id": "7cea57503ecfe0d3",
	 "keyspace": "travel-sample",
	 "limit": "1",
	 "namespace": "default",
	 "spans": [
	 {
	 "Range": {
	 "Inclusion": 0,
	 "Low": [
	 "null"
]
	 }
	 }
],
	 "using": "gsi"
	 }

Step 2

Now we use the index to find the next value for the type.

Use the predicate (type > "airline"). Now you get airport:

	 SELECT MIN(type)
	 FROM 'travel-sample'
	 WHERE type > "airline";
	 {
	 "results": [
	 {
	 "$1": "airport"
	 }

171

],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "10.370383ms",
	 "executionTime": "10.346036ms",
	 "resultCount": 1,
	 "resultSize": 39
	 }
	 }

Repeat this step 2 using the previous value in the predicate until you get NULL as the result.

A simple Python script will get the job done.

	 import requests
	 import json
	 url="http://localhost:8093/query"
	 s = requests.Session()
	 s.keep_alive = True
	 s.auth = ('Administrator','password')
	 query = {'statement':'SELECT MIN(type) minval FROM 'travel-sample` WHERE type IS
	 NOT MISSING ;'}
	 r = s.post(url, data=query, stream=False, headers={'Connection':'close'})
	 result = r.json()['results'][0]
	 lastval = result['minval']
	 while lastval != None:
	 print lastval
	 stmt = 'SELECT MIN(type) minval FROM 'travel-sample' WHERE type > "' + last
	 val + '";';
	 query = {'statement':stmt}
	 r = s.post(url, data=query, stream=False, headers={'Connection':'close'})
	 result = r.json()['results'][0]
	 lastval = result['minval']

Pro Tip

•	 Use a prepared statement for the SELECT statement in the while loop to improve the

performance even further.

172

Case 3

Grouping works closely with counting. It’s common to group the data by type, name, and date

and count them. If you have a dataset with millions of documents, the index scan itself may take

minutes to scan and retrieve all the data.

Here is a simple example on travel-sample.

	 SELECT type, count(type)
	 FROM 'travel-sample'
	 GROUP BY type;
	 "metrics": {
	 "elapsedTime": "904.607551ms",
	 "executionTime": "904.585043ms",
	 "resultCount": 5,
	 "resultSize": 321
	 }

This scans the entire bucket to calculate the groups and counts. You can improve the

performance by using the index scan.

	 SELECT type, count(type)
	 FROM 'travel-sample'
	 WHERE type IS NOT MISSING
	 GROUP BY type;
	 The query plan uses the index now.
	 {
	 "#operator": "IndexScan",
	 "covers": [
	 "cover (('travel-sample'.'type'))",
	 "cover ((meta('travel-sample').'id'))"
],
	 "index": "def_type",
	 "index_id": "a1ae13a30ad4408",
	 "keyspace": "travel-sample",
	 "namespace": "default",
	 ...

This query runs faster as well.

	 "metrics": {
	 "elapsedTime": "212.792255ms",
	 "executionTime": "212.771933ms",
	 "resultCount": 5,

173

	 "resultSize": 321
	 }

Let’s see if we can make this faster.

Using the combination of MIN() and COUNT() optimization features in 4.5, we can improve this

further by writing a small script.

Here is the outline.

Step 1: Get the first entry in the index for the type.

Step 2: Then, COUNT() from the data set where type = first-value.

Step 3: Now we use the index to find the next value for type.

Step 4: Repeat step 2 and 3 for all the values of type.

Here’s the actual Python script:

	 import requests
	 import json
	 url="http://localhost:8093/query"
	 s = requests.Session()
	 s.keep_alive = True
	 s.auth = ('Administrator','password')
	 query = {'statement':'SELECT MIN(type) minval FROM 'travel-sample' WHERE type IS
	 NOT MISSING ;'}
	 r = s.post(url, data=query, stream=False, headers={'Connection':'close'})
	 result = r.json()['results'][0]
	 lastval = result['minval']
	 while lastval != None:
	 stmt = 'SELECT COUNT(type) tcount FROM 'travel-sample' WHERE type = "' +
	 lastval + '";’;
	 query = {'statement':stmt}
	 r = s.post(url, data=query, stream=False, headers={'Connection':'close'})
	 result = r.json()['results'][0]
	 tcount = result['tcount']
	 print lastval, tcount
	 stmt = 'SELECT MIN(type) minval FROM 'travel-sample' WHERE type > "' + last
	 val + '";';
	 query = {'statement':stmt}
	 r = s.post(url, data=query, stream=False, headers={'Connection':'close'})
	 result = r.json()['results'][0]
	 lastval = result['minval']

174

Let’s run this!

	 $ time python ./group.py
	 airline 187
	 airport 1968
	 hotel 917
	 landmark 4495
	 route 24024
	 real0m0.372s
	 user0m0.079s
	 sys0m0.036s
	 $

This is a run on travel-sample with about 31,000 documents. The Python script itself runs

about 10 SELECT statements to retrieve this result. As the number of documents in the dataset

increases, the script approach will run much faster to a single statement. Further, using the

prepared statement, you can save more CPU cycles.

Conclusion

The MIN() and COUNT() optimizations in 4.5 improves query performance. Using additional

logic, you can use these optimizations to improve the performance of a variety of queries.

Assignment

Couchbase 5.0 introduces indexes where each key can have distinct collation.

	 CREATE INDEX idx1 ON 'travel-sample'(TYPE DESC);

Use this index to improve the performance of MAX() aggregate.

175

MORE THAN LIKE: EFFICIENT JSON SEARCHING
WITH N1QL
Author: Keshav Murthy

Enterprise applications require both exact search (equality, range predicate) and pattern search

(LIKE or text search). The B-Tree based indexes in databases help perform an exact search in

milliseconds. Pattern search is a whole different problem. Predicates of patterns (name LIKE

"%turin%") will scan the whole index — unsuitable for application use. Recognizing the need

for speed, we’ve introduced a TOKENS() functions in Couchbase 4.6 which returns an array

of tokens from each field or document. We then index the array using the array indexing in

Couchbase N1QL. This transforms the pattern search problem to a simple equality look up,

improves the performance by orders of magnitude.

Introduction

Whether you’re booking a hotel in Turin or Timbuktu, Milan or Malibu, you need to search

based on various criteria: location, dates, rooms, number of people, their age and more.

The numerical requirements (number of rooms, number of people in the party), date ranges

(check-in and checkout dates) are exact predicates. The target place to visit could be a

search within a city name, region name, nearby places, or interesting landmarks.

http://developer.couchbase.com/documentation/server/4.6/n1ql/n1ql-language-reference/string-functions.html
http://www.couchbase.com/nosql-databases/downloads

176

Here is the problem.

•	 How do you make this query run really, really quickly?

•	 How do you get thousands of users searching and buying your product

and service concurrently?

Search is a broad term. So, we divide searches into distinct types.

1. Exact search with one or more predicates.

2. Pattern search to find a word or a pattern within a larger string.

3. Fuzzy search — text search with a lot of text data.

Of course, all of these search operations have to come back with results in milliseconds

and not seconds.

In Couchbase:

•	 For exact searches, you can use B-tree- or skip-list-based global secondary indexes

with a simple or composite index to achieve your goals.

•	 For full-text search, which requires heavy text processing — stemming, scoring,

and more — you can use Couchbase full-text search (FTS).

The hotel search problem doesn’t fall nicely into either category completely. Exact predicates

require exact index; search predicates require FTS index. Using only index scans, you’ll get too

much data, and you’d need filter further. On the other hand, if you search using full-text index,

you’ll need to filter further for dates, rooms, etc. This second level of filtering will slow things

down significantly.

Real world problems like you saw above are not always clean cut. You want the exact

search for numerical and date range; you want the string search with smaller data like city,

neighborhood, region.

Here is the problem. How do you make this query run really, really quickly? How do you

get thousands of users searching and buying your product and service concurrently?

Let’s use sample Hotel documents in the Couchbase travel-sample data set to explore

the use case.

select hotel, meta().id as dockey
from 'travel-sample' hotel
where hotel.type = "hotel"
limit 1;
[
 {
 "dockey": "hotel_10025",
 "hotel": {

https://developer.couchbase.com/documentation/server/current/fts/full-text-intro.html

177

 "address": "Capstone Road, ME7 3JE",
 "alias": null,
 "checkin": null,
 "checkout": null,
 "city": "Medway",
 "country": "United Kingdom",
 "description": "40 bed summer hostel about 3 miles from Gillingham, housed
in a distinctive converted Oast House in a semi-rural setting.",
 "directions": null,
 "email": null,
 "fax": null,
 "free_breakfast": true,
 "free_internet": false,
 "free_parking": true,
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 51.35785,
 "lon": 0.55818
 },
 "id": 10025,
 "name": "Medway Youth Hostel",
 "pets_ok": true,
 "phone": "+44 870 770 5964",
 "price": null,
 "public_likes": [
 "Julius Tromp I",
 "Corrine Hilll",
 "Jaeden McKenzie",
 "Vallie Ryan",
 "Brian Kilback",
 "Lilian McLaughlin",
 "Ms. Moses Feeney",
 "Elnora Trantow"
],
 "reviews": [
 {
 "author": "Ozella Sipes",
 "content": "This was our 2nd trip here and we enjoyed it as much or more
than last year. Excellent location across from the French Market and just across
the street from the streetcar stop. Very convenient to several small but good
restaurants. Very clean and well maintained. Housekeeping and other staff are all

178

friendly and helpful. We really enjoyed sitting on the 2nd floor terrace over the
entrance and \"people-watching\" on Esplanade Ave., also talking with our fellow
guests. Some furniture could use a little updating or replacement, but nothing
major.",
 "date": "2013-06-22 18:33:50 +0300",
 "ratings": {
 "Cleanliness": 5,
 "Location": 4,
 "Overall": 4,
 "Rooms": 3,
 "Service": 5,
 "Value": 4
 }
 },
 {
 "author": "Barton Marks",
 "content": "We found the hotel de la Monnaie through Interval and we
thought we'd give it a try while we attended a conference in New Orleans. This
place was a perfect location and it definitely beat staying downtown at the Hilton
with the rest of the attendees. We were right on the edge of the French Quarter
within walking distance of the whole area. The location on Esplanade is more of a
residential area so you are near the fun but far enough away to enjoy some quiet
downtime. We loved the trolly car right across the street and we took that down
to the conference center for the conference days we attended. We also took it up
Canal Street and nearly delivered to the WWII museum. From there we were able to
catch a ride to the Garden District - a must see if you love old architecture -
beautiful old homes(mansions). We at lunch ate Joey K's there and it was excel-
lent. We ate so many places in the French Quarter I can't remember all the names.
My husband loved all the NOL foods - gumbo, jambalaya and more. I'm glad we found
the Louisiana Pizza Kitchen right on the other side of the U.S. Mint (across the
street from Monnaie). Small little spot but excellent pizza! The day we arrived
was a huge jazz festival going on across the street. However, once in our rooms,
you couldn't hear any outside noise. Just the train at night blowing it's whis-
tle! We enjoyed being so close to the French Market and within walking distance
of all the sites to see. And you can't pass up the Cafe du Monde down the street
- a busy happening place with the best French doughnuts!!!Delicious! We will
definitely come back and would stay here again. We were not hounded to purchase
anything. My husband only received one phone call regarding timeshare and the
woman was very pleasant. The staff was laid back and friendly. My only complaint
was the very firm bed. Other than that, we really enjoyed our stay. Thanks Hotel
de la Monnaie!",

179

 "date": "2015-03-02 19:56:13 +0300",
 "ratings": {
 "Business service (e.g., internet access)": 4,
 "Check in / front desk": 4,
 "Cleanliness": 4,
 "Location": 4,
 "Overall": 4,
 "Rooms": 3,
 "Service": 3,
 "Value": 5
 }
 }
],
 "state": null,
 "title": "Gillingham (Kent)",
 "tollfree": null,
 "type": "hotel",
 "url": "http://www.yha.org.uk",
 "vacancy": true
 }
 }
]

Now, let’s see some common questions from your application and how these questions can be

translated to queries.

1. Find all the hotel information for "Medway Youth Hostel"

* This is an exact search of the predicate (hotel.name = "Medway Youth Hostel")

Query:
SELECT hotel
FROM 'travel-sample' hotel
WHERE hotel.type = "hotel"
AND hotel.name = "Medway Youth Hostel";
Index:
CREATE INDEX idx_hotel_typename

ON 'travel-sample'(name) WHERE type = "hotel";

2. Find all the hotels in "Medway", "United Kingdom"

* This is an exact search with the predicate: (hotel.country = "United Kingdom" AND

hotel.city = "Medway")

180

Query:
SELECT hotel
FROM 'travel-sample' hotel
WHERE hotel.type = "hotel"
AND hotel.country = "United Kingdom"
AND hotel.city = "Medway"
Index:
CREATE INDEX idx_hotel_typecountryname

ON 'travel-sample'(country, name) WHERE type = "hotel"

3. Find all the hotels liked (in the field public_field) by the a person with a name

(first or last) Vallie

* public_likes is an array of field. It has names of the people who liked the hotel.

* This is a pattern search. We’re looking for a first name or last name Vallie.

 "public_likes": [
 "Julius Tromp I",
 "Corrine Hilll",
 "Jaeden McKenzie",
 "Vallie Ryan",
 "Brian Kilback",
 "Lilian McLaughlin",
 "Ms. Moses Feeney",
 "Elnora Trantow"
]

So we use the array predicate to search through array elements. To make this search faster,

we create an array index on public_likes. This index scan will still fetch all the elements from

the index and apply the LIKE "%vallie%" on top of it.

Query:
SELECT hotel
FROM 'travel-sample' hotel
WHERE hotel.type = "hotel"
AND ANY p IN hotel.public_likes
 SATISFIES LOWER(p) LIKE "%vallie%"
 END
Index:
CREATE INDEX idx_publiclikes ON 'travel-sample'
(DISTINCT ARRAY LOWER(p) FOR p IN public_likes END)
WHERE type = "hotel";

181

Explain:
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "idx_publiclikes",
 "index_id": "9a10e62d4ad4387a",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "[]"
],
 "Inclusion": 1,
 "Low": [
 "\"\""
]
 }
 }
],
 "using": "gsi"
 }
 }

4. Find all the hotels that mention architecture anywhere in the document. This anywhere --

could be in keyname (attribute name), any value — in name, description, reviews, etc.

This has a pattern search. Search for architecture anywhere in the document is a pattern search.

Index: This query can use a primary index.

SELECT COUNT(1) totalcount FROM 'travel-sample' hotel
WHERE ANY v WITHIN OBJECT_PAIRS(hotel)
 SATISFIES LOWER(v) LIKE "%architecture%"
 END
{
 "requestID": "426b993e-a214-4e5f-824e-aef2ebfd3262",
 "signature": {
 "$1": "number"
 },
 "results": [

182

 {
 "$1": 94
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "12.130759027s",
 "executionTime": "12.130687174s",
 "resultCount": 1,
 "resultSize": 32
 }
}

While this query works, it takes 12.13 seconds to find the 41 documents which have the word

architecture somewhere in the document. Too slow and too expensive.

Here is where the TOKENS come into the picture. TOKENS() function takes a JSON document

or an expression, analyzes all of name value pairs, arrays, objects and returns an array of values

of basic types: numeric, strings, boolean, null.

SELECT TOKENS(hotel)
FROM 'travel-sample' hotel
WHERE hotel.type = 'hotel'
LIMIT 1;
[
 {
 "$1": [
 null,
 false,
 true,
 51.35785,
 0.55818,
 10025,
 4,
 3,
 5,
 "friendly",
 "distance",
 "once",
 "rooms",
 "close",
 "Hilll",

183

 "all",
 "Monnaie",
 "homes",
 "huge",
 "Kilback",
 "vacancy",
 "Value",
 "Sipes",
 "call",
 "converted",
 "770",
…
 "Marks",
 "Youth",
 "watching",
 "Hilton",
 "noise",
 "received"
]
 }
]

184

Once we get this array, we can use the array indexing, to index the result of TOKENS and

query them:

CREATE INDEX idx_travel_tokens ON 'travel-sample'
(DISTINCT ARRAY s for s IN TOKENS('travel-sample', {"case":"lower", "names":
true}) END);

select count(1) FROM 'travel-sample' h
WHERE ANY s IN tokens(h, {"case":"lower", "names": true}) SATISFIES s = 'archi-
tecture' END;

{
 "requestID": "dd6cfb24-ae5f-4667-a332-fc21ec48f808",
 "signature": {
 "$1": "number"
 },
 "results": [
 {
 "$1": 94
 }
],

185

 "status": "success",
 "metrics": {
 "elapsedTime": "33.398256ms",
 "executionTime": "33.359819ms",
 "resultCount": 1,
 "resultSize": 32
 }
}

Let’s look at the query plan. It chose the tokens right index and more importantly, the

predicates were pushed correctly into index scans (reported here as spans). The appropriate

index is selected and the predicate looking for architecture is pushed down to index scan.

 "~children": [
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "idx_travel_tokens",
 "index_id": "9f370cd078ebd2eb",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"architecture\""
],
 "Inclusion": 3,
 "Low": [
 "\"architecture\""
]
 }
 }
],
 "using": "gsi"
 }

 }

186

1. Finally, let’s put all of this together to answer this question: Find all the hotels in United

Kingdom which have vacancies and with a website.

•	 We can check for (country = ‘United Kingdom’ and vacancy = true) easily via

composite index.

•	 Having a "website" needs to be defined well.

•	 When you get information from hotels, unless you go through a ETL process to save

the information in an exact field and format, you’d have this information anywhere in

the hotel document.

2. Example:

"url": "http://www.yha.org.uk",
"Website": "http://www.yha.org.uk"
"Http": "www.yha.org.uk"
"Http address": "www.yha.org.uk"
"Web" : "Our website: http://www.yha.org.uk "
"Contact" :
 "Phone" : "+44 482 492 292",
 "Web" : "http://www.yha.org.uk",
 "Mail" : "help@yha.org.uk"
 }
"Info": " +44 482 492 292 http://www.yha.org.uk"
"Info": ["+44 482 492 292", "http://www.yha.org.uk"

Problem: You’d need to search in every field name, every object, every array.

Query:
EXPLAIN
SELECT *
FROM 'travel-sample' hotel
WHERE country = "United Kingdom"
AND vacancy = true
AND ANY v IN TOKENS(hotel, {"case":"lower", "name":true})
 SATISFIES v = "http"
 END
AND type = "hotel"
Index
CREATE INDEX idx_countryvacancytoken ON 'travel-sample'
 (country,
 vacancy,

187

 DISTINCT
 ARRAY v for v IN
 tokens('travel-sample', {"case":"lower", "name":true})
 END
) WHERE type = "hotel";
Plan
====
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "idx_countryvacancytoken",
 "index_id": "c44e9b1d7102a736",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"United Kingdom\"",
 "true",
 "\"http\""
],
 "Inclusion": 3,
 "Low": [
 "\"United Kingdom\"",
 "true",
 "\"http\""
]
 }
 }
],

In this case, we push down all of the predicates to the index scan.

The query runs in about 233 milliseconds!

SELECT *
FROM 'travel-sample' hotel
WHERE country = "United Kingdom"
AND vacancy = true
AND ANY v IN TOKENS(hotel, {"case":"lower", "name":true}) SATISFIES v = "http"
 END

188

AND type = "hotel";
Results (partially shows for brevity):
{
 "requestID": "c4a30037-d808-419c-a691-ab783f46866c",
 "signature": {
 "*": "*"
 },
 "results": [
 {
 "hotel": {
 "address": "Capstone Road, ME7 3JE",
 "alias": null,
 "checkin": null,
 "checkout": null,
 "city": "Medway",
 "country": "United Kingdom",
 "description": "40 bed summer hostel about 3 miles from Gilling-
ham, housed in a districtive converted Oast House in a semi-rural setting.",
 "directions": null,
 "email": null,
 "fax": null,
 "free_breakfast": true,
 "free_internet": false,
 "free_parking": true,
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 51.35785,
 "lon": 0.55818
 },
 "id": 10025,
 "name": "Medway Youth Hostel",
 "pets_ok": true,
 "phone": "+44 870 770 5964",
 "price": null,
 "public_likes": [
 "Julius Tromp I",
 "Corrine Hilll",
 "Jaeden McKenzie",
 "Vallie Ryan",
 "Brian Kilback",
 "Lilian McLaughlin",

189

 "Ms. Moses Feeney",
 "Elnora Trantow"
],
 "reviews": [
 {
 "author": "Ozella Sipes",
 "content": "This was our 2nd trip here and we enjoyed it
as much or more than last year. Excellent location across from the French Market
and just across the street from the streetcar stop. Very convenient to several
small but good restaurants. Very clean and well maintained. Housekeeping and oth-
er staff are all friendly and helpful. We really enjoyed sitting on the 2nd floor
terrace over the entrance and \"people-watching\" on Esplanade Ave., also talking
with our fellow guests. Some furniture could use a little updating or replace-
ment, but nothing major.",
 "date": "2013-06-22 18:33:50 +0300",
 "ratings": {
 "Cleanliness": 5,
 "Location": 4,
 "Overall": 4,
 "Rooms": 3,
 "Service": 5,
 "Value": 4
 }
 },
 {
 "author": "Barton Marks",
 "content": "We found the hotel de la Monnaie through In-
terval and we thought we'd give it a try while we attended a conference in New
Orleans. This place was a perfect location and it definitely beat staying downtown
at the Hilton with the rest of the attendees. We were right on the edge of the
French Quarter withing walking distance of the whole area. The location on Espla-
nade is more of a residential area so you are near the fun but far enough away to
enjoy some quiet downtime. We loved the trolly car right across the street and we
took that down to the conference center for the conference days we attended. We
also took it up Canal Street and nearly delivered to the WWII museum. From there
we were able to catch a ride to the Garden District - a must see if you love old
architecture - beautiful old homes(mansions). We at lunch ate Joey K's there and
it was excellent. We ate so many places in the French Quarter I can't remember
all the names. My husband loved all the NOL foods - gumbo, jambalya and more. I'm
glad we found the Louisiana Pizza Kitchen right on the other side of the U.S.
Mint (across the street from Monnaie). Small little spot but excellent pizza! The

190

day we arrived was a huge jazz festival going on across the street. However, once
in our rooms, you couldn't hear any outside noise. Just the train at night blowin
it's whistle! We enjoyed being so close to the French Market and within walking
distance of all the sites to see. And you can't pass up the Cafe du Monde down
the street - a busy happenning place with the best French dougnuts!!!Delicious!
We will defintely come back and would stay here again. We were not hounded to
purchase anything. My husband only received one phone call regarding timeshare
and the woman was very pleasant. The staff was laid back and friendly. My only
complaint was the very firm bed. Other than that, we really enjoyed our stay.
Thanks Hotel de la Monnaie!",
 "date": "2015-03-02 19:56:13 +0300",
 "ratings": {
 "Business service (e.g., internet access)": 4,
 "Check in / front desk": 4,
 "Cleanliness": 4,
 "Location": 4,
 "Overall": 4,
 "Rooms": 3,
 "Service": 3,
 "Value": 5
 }
 }
],
 "state": null,
 "title": "Gillingham (Kent)",
 "tollfree": null,
 "type": "hotel",
 "url": "http://www.yha.org.uk",
 "vacancy": true
 }
.....
 "status": "success",
 "metrics": {
 "elapsedTime": "233.475262ms",
 "executionTime": "233.397438ms",
 "resultCount": 185,
 "resultSize": 1512687
 }
}

191

TOKENS() Function

This function is explained in detail in Couchbase documentation. The important thing to note

is that first expression passed into token can be anything: constant literal, simple JSON value,

JSON key name or the whole document itself.

TOKENS (Expression, Options)

You can invoke TOKENS() simply with the expressions or with the option. The function always

returns an array of tokens it extracted for the given (implied) options.

TOKENS(address)

This returns an array of values including the attribute (key) names. It retrieves the data in

their basic types and returns.

Options can take the following options. Each invocation of TOKENS() can choose one or

more of the options, passed in as JSON.

{"name": true}: Valid values are true or false. Default is true.

{"case":"lower"}: Valid values are "upper" and "lower". Default is neither — return the 	

case in the data.

{"specials": true}: Preserves strings with special characters such as email addresses, URLs,

and hyphenated phone numbers. The default is false.
Let’s use all of the options on TOKENS() to see what it produces.

Query:

SELECT
TOKENS ({"info":"Name is keshav email is keshav@couchbase.com Blog is http://
planetnosql.com twitter handle is @rkeshavmurthy"},
{"specials":true, "names":true, "case":"lower"}) AS words
Result:
[
 {
 "words": [
 "info",
 "planetnosql",
 "http://planetnosql.com",
 "rkeshavmurthy",
 "name",
 "@rkeshavmurthy",
 "com",
 "http",
 "couchbase",

http://developer.couchbase.com/documentation/server/4.6/n1ql/n1ql-language-reference/string-functions.html#topic_o4s_2px_vx

192

 "blog",
 "twitter",
 "is",
 "keshav",
 "handle",
 "email",
 "keshav@couchbase.com"
]
 }
]

With names set to true, you’ll get the field name, in this case info.

With specials set to true, you’ll get delimited words as well as special works like

keshav@couchbase.com or @rkeshavmurthy as a single word to index.

With case set to lower, all of the results will be in the lower case.

Let’s look at an example usage on the travel-sample data.

SELECT TOKENS(url) AS defaulttoken,
 TOKENS(url, {"specials":true, "case":"UPPER"}) AS specialtoken
FROM 'travel-sample' h WHERE h.type = 'hotel'
LIMIT 1;
[
 {
 "defaulttoken": [
 "uk",
 "www",
 "http",
 "yha",
 "org"
],
 "specialtoken": [
 "ORG",
 "WWW",
 "HTTP://WWW.YHA.ORG.UK",
 "YHA",
 "UK",
 "HTTP"
]
 }
]

193

In this case, TOKENS() converted all of the URL data into UPPER case and added the full URL in

addition to delimited words.

Use {"case":"lower"} or {"case":"upper"} to have case insensitive search. Index creation and

querying can use this and other parameters in combination. As you saw in the examples, these

parameters should be passed within the query predicates as well. The parameters and values

have to match exactly for N1QL to pick up and use the index correctly.

Here is an example of how you can create the index and use it your application.

Index definition:
CREATE INDEX idx_url_upper_special on 'travel-sample'(
 DISTINCT ARRAY v for v in
 tokens(url, {"specials":true, "case":"UPPER"})
 END) where type = 'hotel' ;
Query:
SELECT name, address, url
FROM 'travel-sample' h
WHERE ANY v in tokens(url, {"specials":true, "case":"UPPER"})
 SATISFIES v = "HTTP://WWW.YHA.ORG.UK"
 END
AND h.type = 'hotel' ;
Results:
[
 {
 "address": "Capstone Road, ME7 3JE",
 "name": "Medway Youth Hostel",
 "url": "http://www.yha.org.uk"
 }
]
Query Plan:
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "idx_url_upper_special",
 "index_id": "ec73b96583ac2edf",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [

194

 "\"HTTP://WWW.YHA.ORG.UK\""
],
 "Inclusion": 3,
 "Low": [
 "\"HTTP://WWW.YHA.ORG.UK\""
]
 }
 }
],

Summary

Couchbase 4.6 has introduced a new way to split the JSON document into simpler values using

TOKENS(). Using the flexible array indexing in Couchbase, you can now create secondary

indexes for scalar and array values. This is a high-performance alternative to the LIKE predicate.

Its performance is so much more likable.

References

•	 Couchbase : http://www.couchbase.com

•	 N1QL: http://query.couchbase.com

•	 Couchbase Full Text Search: http://developer.couchbase.com/documentation/server/

current/fts/full-text-intro.html

•	 SPLIT and CONQUER: https://dzone.com/articles/split-and-conquer-efficient-string-

search-with-n1q

•	 A Couchbase Index Technique for LIKE Predicates With Wildcard: https://dzone.com/

articles/a-couchbase-index-technique-for-like-predicates-wi

http://www.couchbase.com
http://query.couchbase.com
http://developer.couchbase.com/documentation/server/current/fts/full-text-intro.html
http://developer.couchbase.com/documentation/server/current/fts/full-text-intro.html
https://dzone.com/articles/split-and-conquer-efficient-string-search-with-n1q
https://dzone.com/articles/split-and-conquer-efficient-string-search-with-n1q
https://dzone.com/articles/a-couchbase-index-technique-for-like-predicates-wi
https://dzone.com/articles/a-couchbase-index-technique-for-like-predicates-wi

195

SPLIT AND CONQUER: EFFICIENT STRING SEARCH
WITH N1QL IN COUCHBASE
Author: Keshav Murthy

Consider my DZone article: Concurrency Behavior: MongoDB vs. Couchbase. It’s a 10+ page

article. For any application, indexing and supporting searching within the full text is a big task.

The best practice for search is to have tags or labels for each article and then search on those

tags. For this article, tags are: CONCURRENCY, MONGODB, COUCHBASE, INDEX, READ,

WRITE, PERFORMANCE, SNAPSHOT, and CONSISTENCY.

Let’s put this into a JSON document.

	 Document Key: "k3"
{
"tags": "CONCURRENCY,MONGODB,COUCHBASE,INDEX,READ,WRITE,PERFORMANCE,SNAPSHOT,
CONSISTENCY",
"title": "Concurrency Behavior: MongoDB vs. Couchbase"
}

It’s one one thing to store the tags. It’s another thing to search for a tag within the string. How

do you search for the COUCHBASE tag within the tags? How do you search for a specific string

within this "tags"?

In SQL, you can do the following:

	 SELECT title, url FROM articles WHERE tags LIKE "%COUCHBASE%";
Query Explain:
 "~children": [
 {
 "#operator": "PrimaryScan",
 "index": "#primary",
 "keyspace": "articles",
 "namespace": "default",
 "using": "gsi"
 },

Create an index on tags, you get the following plan:

	 CREATE INDEX idx_articles_tags on articles(tags);
	 EXPLAIN SELECT title, url FROM articles WHERE tags LIKE "%COUCHBASE%";
	 Query Plan:

 "#operator": "Sequence",
 "~children": [
 {

https://dzone.com/articles/concurrency-behavior-mongodb-vs-couchbase

196

 "#operator": "IndexScan",
 "index": "idx_articles_tags",
 "index_id": "ca25a044d8383f1",
 "keyspace": "articles",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "[]"
],
 "Inclusion": 1,
 "Low": [
 "\"\""
]
 }
 }
],

You need to use the pattern "%COUCHBASE%" because the string pattern could be anywhere

within the tags string. Whether you do a primary scan (table scan) or an index scan, this query

is going to be slow on a large data set, as it has to scan the entire data set or the index to

correctly evaluate the predicate.

Two observations here:

	 1. While the predicate "%COUCHBASE%" looks for the word COUCHBASE anywhere in 	

		 the string, it’s usually in there as a separate word, tag or label.

	 2. Applications and users typically search for the whole word.

Now, let’s see how N1QL makes this fast, easy, and efficient.

Let’s first look at the SPLIT() function. SPLIT() can take any string and a separator, and return

array strings.

SELECT
SPLIT("CONCURRENCY,MONGODB,COUCHBASE,INDEX,READ,WRITE,PERFORMANCE,SNAPSHOT,
CONSISTENCY", ",");
 "results": [
 {
 "$1": [
 "CONCURRENCY",
 "MONGODB",
 "COUCHBASE",

197

 "INDEX",
 "READ",
 "WRITE",
 "PERFORMANCE",
 "SNAPSHOT",
 "CONSISTENCY"
]
 }
]

Once you have an array, you can query the data based on array predicates.

Note: System:dual always has a single document with null in it.

SELECT COUNT(*) boolcount
FROM system:dual
WHERE
ANY s in SPLIT("CONCURRENCY,MONGODB,COUCHBASE,INDEX,READ,WRITE,PERFORMANCE,SNAP-
SHOT,CONSISTENCY", ",")
 SATISFIES s = "COUCHBASE"
END;
[
 {
 "boolcount": 1
 }
]

Let’s try to find something that doesn’t exist. Since the predicate is evaluated to be False,

nothing is returned.

SELECT COUNT(*) boolcount
FROM system:dual
WHERE
ANY s in SPLIT("CONCURRENCY,MONGODB,COUCHBASE,INDEX,READ,WRITE,PERFORMANCE,SNAP-
SHOT,CONSISTENCY", ",")
 SATISFIES s = "TRANSACTION"
END;
[
 {
 "boolcount": 0
 }
]

198

We can convert the tags string into an array of strings and then lookup the value in the array

instead of searching within the whole string.

Now, we’ve converted the problem from string search to array look up. Couchbase 4.5 has a

flexible array indexing capability to index arrays. Exploiting this, we can look up the value in the

array index very efficiently.

Here’s the approach:

Let’s try this end-to-end example on Couchbase 4.5 or above.

1. Create a bucket called articles.

2. CREATE primary index

CREATE PRIMARY INDEX ON articles;

3. INSERT the following documents.

INSERT INTO articles(KEY, VALUE) VALUES("k1",
{ "tags": "JSON,N1QL,COUCHBASE,BIGDATA,NAME,data.gov,SQL",
"title": "What's in a New York Name? Unlock data.gov Using N1QL "
}),
VALUES("k2",
 {
 "tags": "TWITTER,NOSQL,SQL,QUERIES,ANALYSIS,HASHTAGS,JSON,COUCHBA-
SE,ANALYTICS,INDEX",
 "title": "SQL on Twitter: Analysis Made Easy Using N1QL"
 }),
VALUES("k3",
 {
 "tags": "CONCURRENCY,MONGODB,COUCHBASE,INDEX,READ,WRITE,PERFOR-
MANCE,SNAPSHOT,CONSISTENCY",
 "title": "Concurrency Behavior: MongoDB vs. Couchbase"
 }),
VALUES("k4",
 {
 "tags": "COUCHBASE,N1QL,JOIN,PERFORMANCE,INDEX,DATA MODEL,FLEXI-
BLE,SCHEMA",
 "title": "JOIN Faster With Couchbase Index JOINs"
 }),
VALUES ("k5",
 {

199

 "tags": "NOSQL,NOSQL BENCHMARK,SQL,JSON,COUCHBASE,MONGODB,YCSB,PERFOR-
MANCE,QUERY,INDEX",
 "title": "How Couchbase Won YCSB"
 });

4. CREATE the ARRAY INDEX

CREATE INDEX 'itagarray' ON 'articles'
((DISTINCT (ARRAY 'wrd' FOR 'wrd' IN SPLIT('tags', ",") END)))

5. Let’s query the data now.

EXPLAIN SELECT articles.*
FROM articles
WHERE ANY wrd in SPLIT(tags, ",") SATISFIES wrd = "COUCHBASE" END;

This explain shows the array index is used and the spans created for the index scan.

 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "itagarray",
 "index_id": "266223a6846cac2b",
 "keyspace": "articles",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"COUCHBASE\""
],
 "Inclusion": 3,
 "Low": [
 "\"COUCHBASE\""
]
 }
 }
],
 "using": "gsi"
 }
 },

200

Let’s get greedy. Now that we have an efficient way to look up the tags, let’s make it

case insensitive.

1. Create the array index, but convert the data into lower case before you index it.

CREATE INDEX 'itagarraylower'
 ON 'articles'
(DISTINCT ARRAY 'wrd' FOR 'wrd' IN SPLIT(LOWER('tags'), ",") END);

2. Start querying.

EXPLAIN SELECT articles.*
FROM articles
WHERE ANY wrd in SPLIT(LOWER(tags), ",") SATISFIES wrd = "couchbase" END;
 "~children": [
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "itagarraylower",
 "index_id": "3ace3e48e2124ffe",
 "keyspace": "articles",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"couchbase\""
],
 "Inclusion": 3,
 "Low": [
 "\"couchbase\""
]
 }
 }
],
 "using": "gsi"
 }
 },

201

You can even put a LOWER expression on the tag you’re looking for to make the

query generalized.

You can even put a LOWER expression on the tag you're looking for to make the
query generalized.
EXPLAIN SELECT articles.*
FROM articles
WHERE
 ANY wrd in SPLIT(LOWER(tags), ",")
 SATISFIES wrd = LOWER("couchbase")

 END;

More Use Cases

Tags aren’t the ONLY type of data stored in regular string pattern. Tags are NOT the only ones

to benefit from the technique. Here are some other examples:

•	 Airline route information

"SFO:LAX:FLG:PHX:HOU:MCO"

•	 Variable list of employee skills

"Java,C,C++,Python,perl"

•	 CSV processing: Handling data import from CSV.

3RJA043,Acura Integra,Honda,GSR,172,189482,1996,,California

•	 Hashtags search

#SQL#NoSQL#JSON#appdev#database#Optimizer#indexing

Conclusion

N1QL is designed to handle the flexible schema and structure of JSON. Array indexing helps

you to process and exploit arrays in useful ways.

202

203203

PERFORMANCE INGREDIENTS FOR NOSQL:
INTERSECT SCANS IN N1QL
Author: Prasad Varakur

Couchbase Server N1QL Query Engine is SQL for JSON

It’s not an exaggeration to say that query processing has produced tons of papers and

patents. It is one of the most complex and complicated areas in the database realm. With the

proliferation of NoSQL/document databases and more adoption into the enterprise, there is

high demand and a requirement for sophisticated query processing capabilities for NoSQL

beyond k/v get/set accesses. Remember, the JSON data model is the foundation of

document databases that brings the most value to NoSQL (among others like scale-out, HA,

and performance) with its fundamentally different capabilities (w.r.t RDBMS) such as

flexible schema and hierarchical and multi-valued data.

In this blog, I will try to explain some of the performance ingredients and optimization

techniques used for efficient JSON query processing. More specifically, I will cover intersect

scans, which leverages multiple indexes for a query and brings subtle performance

characteristics. For simplicity, I will use the latest Couchbase Server 4.6 N1QL engine and the

packaged travel-sample data for examples. Note that N1QL is the most sophisticated query

engine and the most comprehensive implementation of SQL (in fact, SQL++) for JSON

data model.

Fundamentals of Performance

The performance of any system follows physics. The basic two rules can be (loosely) stated as:

1. Quantity: Less work is more performance.

2. Quality: Faster work is more performance.

Query processing is no different and it also tries to optimize both these factors in various forms

and scenarios to bring efficiency. Each optimization is different and results in a different amount

of performance benefit. As the saying goes, every nickel adds to a dollar, and the N1QL engine

keeps incorporating performance enhancements to run queries as efficiently as possible.

Intersect Scans: Using Multiple Indexes for AND Queries

•	 As you might already know, secondary indexes (just "indexes" for short) are the biggest

performance techniques used by query processing. Database indexes help with efficiently

mapping and finding document attributes to documents. For example, with user profile

employee documents, a key-value store can fetch a particular document only if the

https://www.couchbase.com/products/n1ql
https://www.couchbase.com/downloads
https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html
https://www.couchbase.com/products/n1ql

204

corresponding document_key is available. However, creating an index on the name

attribute of the document maintains mapping of all name values to the set of documents

holding a specific name value. This is called index-lookup or IndexScan operation.

When one index satisfies lookup for a query predicate, it is called a simple IndexScan. However,

when a query has multiple AND predicate conditions, then different available indexes may

satisfy different conditions in the WHERE-clause. In such case, N1QL uses the technique called

Intersect Scan, where both the indexes are used to find documents matching the predicates.

The technique is based on the premise that the intersection of the sets of documents obtained

by IndexScan lookups from each of the satisfying indexes is equal to the logical-AND of

applying respective individual predicates. Note that this is related, but very different from using

composite indexes, where a single index is created on multiple fields used in different predicates

of the query. Will cover it later in the blog.

Let’s understand this with some simpler example. Consider following query which has

predicates on name and age, and also assume we have two indexes created on the two fields used

in the WHERE-clause.

CREATE INDEX idx_name ON emp(name);
CREATE INDEX idx_age ON emp(age);
SELECT * FROM emp WHERE name = "Ram" and age < 35;

205

In this case, both the indexes can satisfy the query predicate, but neither can fully help the two

predicate conditions. By using simple IndexScan, the N1QL query engine can do following:

•	 Use the name index idx_name:

•	 In this case, index idx_name is looked up to first find all the documents keys

	 which match name = "Ram".

– Then, respective documents are fetched and the second filter age < 35 is applied

– Finally, query returns the set of documents which matched both the filers.

•	 Use the age index idx_age:

oo In this case, the index idx_age is looked up first, to find all the document keys 	

	 which match age < 35.

oo Then, respective documents are fetched and the second filter name =

	 "Ram" is applied.

oo Finally, the query returns the set of documents which matched both the filers.

Both approaches make sense and produce correct results. However, they have very significant

and subtle performance characteristics. The performance depends on a property called

selectivity of the predicate conditions, which is defined as the ratio of the number of documents

matching particular predicate to the total number of documents considered. For instance:

•	 If the there 100 documents in the emp bucket and five employees have name "Ram," then

the selectivity of the predicate (name = 'Ram') is 5/100 = 0.05 (or 5% for simplicity).

•	 Similarly, if 40% of the 100 employees are aged less than 35, then the selectivity of

(age < 35) is 0.4.

•	 Finally, the selectivity of the conjunctive predicate will be <= min(0.05, 0.4).

Now you might be wondering what these selectivities have anything to do with the query

performance. Let’s connect the dots by looking at the two IndexScan approaches we

talked above:

•	 ●	 Use the name index idx_name.

oo Index lookup finds five documents matching (name = 'Ram') and returns

	 the corresponding document keys to N1QL.

oo The five documents are fetched, and second filter (age < 35) is applied.

	 Assume two documents satisfy this condition (i.e., selectivity of both

		 predicates together is 0.02 or 2%).

oo The two documents matching both the filters are returned as the final result.

•	 Use the age index idx_age.

	 • Index lookup finds 40 documents matching (age < 35) and returns the corresponding 	

		 40 document keys to N1QL.

206

	 • The 40 documents are fetched, and second filter (name = 'Ram') is applied. Only two 	

		 documents will satisfy this condition.

	 • The two documents matching both the filters are returned as the final result.

Now, it’s very apparent that the first approach using the index idx_name is much more efficient

than the second approach of using idx_age. The first approach is doing less work in each of the

steps. In particular, fetching five documents instead of 40 is huge!

We can generalize this and say it is always efficient to evaluate predicates with lower selectivity

values, followed by higher selectivities. Relational databases understand these factors very well,

and their cost-based query optimizers maintain enough statistics to figure the best index for

the query. N1QL is a rule-based query optimizer and solves this problem smartly using Intersect

Scans to both the indexes. The steps are:

1. Send parallel request to both indexes with respective predicates.

2. Index lookup of idx_name with (name = ‘Ram’), which returns

	 five document keys.

3. Index lookup of idx_age with (age < 35), which returns 40 document keys.

4. The intersection of the two sets of the keys is performed, which returns the

	 two document keys that should satisfy both the filters.

5. The two documents are fetched, predicates are reapplied (to cover any potential 	

	 inconsistencies between index and data), and final results are returned. Note that, 	

	 for performance reasons, indexes are maintained asynchronously to reflect any data

	 or document changes. N1QL provides various consistency levels that can be specified 	

	 per query.

207

Performance Characteristics of IntersectScan

The following observations can be made from the above five steps of how IntersectScan’s work:

•	 IntersectScan can be more performant when the final result of the conjunctive predicate

is much smaller than that of individual filters.

•	 IntersectScan does index lookups to all satisfying indexes. This may be unnecessary, for

example, when we know a specific index is best, or when some index lookups don’t filter

any documents (such as duplicate indexes, or when an index is subset of another). So,

when we have a lot of satisfying indexes, InterSect scans can be more expensive (than

using a specific index).

•	 The Subset of satisfying indexes can be provided to the query using the USE INDEX (idx1,

idx2, ...) clause, to override N1QL default behavior of picking all satisfying indexes for the

IntersectScan.

•	 As there are pros and cons of using IntersectScans, always check the EXPLAIN output

of your performance sensitive queries and make sure if the IntersectScans are used

appropriately.

•	 Look at my blog on N1QL performance improvements in Couchbase Server 4.6 release

for few such subtle optimizations related to IntersectScans.

Comparing With Composite Indexes: Flexibility vs. Performance

As it is clear by now, the purpose of IntersectScans is to efficiently run queries with conjunctive

queries. Composite indexes are an excellent alternative to doing the same, and yes, there are

trade-offs. A composite index is an index with multiple fields as index-keys. For example, the

following index is created with name and age:

CREATE INDEX idx_name_age ON emp(name, age);

This index can very well fully satisfy the query discussed earlier and perform as well as (or

slightly better) than the IntersectScan. However, this index cannot help a query with a filter on

just age field, such as:

Q1: SELECT * FROM emp WHERE age = 35

208

That will violate the prefix-match constraint of the composite indexes. That means that to use

a composite index, all the prefixing index-keys/fields must be specified as part of the WHERE-

clause. In this example, name must be used in the WHERE-clause to be able to use the index

idx_name_age. as in:

Q2: SELECT * FROM emp WHERE age = 35 AND name IS NOT MISSING;

There are two problems with this rewritten query Q2:

1. Q2 is not equivalent to Q1. For example, Q1 may return more documents which has a 	

	 missing name field.

2. The selectivity of the spurious predicate (name IS NOT MISSING) may be really high, 	

	 thus pretty much converting the indexScan into a full scan. That means the index

	 look up will go through all index entries which have non-missing name, and then

	 subsequently check for (age = 35). In contrast, when using the index idx_age, the

 index en try for (age = 35) is a straight point-lookup and returned instantaneously.

Further, it is important to understand that the size of the composite index gets larger with the

number of index keys. Lookups/scans on a bigger index will be more expensive, than those on a

smaller index (on one field). To summarize:

•	 Composite indexes are a better choice to optimize specific queries.

•	 Simple indexes (on one or more fields), along with IntersectScans are a better choice for

ad hoc queries which need the flexibility of conjunctive predicates on various fields.

Example

Let’s look at a live example with travel-sample data and precreated indexes def_type and def_

sourceairport shipped with the product. Ran these tests with Couchbase Server 4.6 DP release

on my Mac Pro laptop. The query finds the destination airports and number of stops/hops,

starting from SFO.

Use the index def_type:

EXPLAIN SELECT destinationairport, stops
FROM 'travel-sample'
USE INDEX (def_type)
WHERE type = "route" AND sourceairport = "SFO";
[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",

https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html

209

 "index": "def_type",
 "index_id": "e23b6a21e21f6f2",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"route\""
],
 "Inclusion": 3,
 "Low": [
 "\"route\""
]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "keyspace": "travel-sample",
 "namespace": "default"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "((('travel-sample'.'type') = \"route\") and (('trav-
el-sample'.'sourceairport') = \"SFO\"))"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('travel-sample'.'destinationairport')"
 },
 {

210

 "expr": "('travel-sample'.'stops')"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 "text": "SELECT destinationairport, stops\nFROM 'travel-sample'\nUSE INDEX
(def_type) \nWHERE type = \"route\" AND sourceairport = \"SFO\";"
 }
]

This query took on average 650msec. Note that the selectivity of (type = 'route’)

is 0.76 (i.e., 24,024 of 31,592 docs).

SELECT (SELECT RAW count(*) FROM 'travel-sample' t where type = "route")[0]/
 (SELECT RAW count(*) FROM 'travel-sample' t1)[0] as selectivity;
[
 {
 "selectivity": 0.7604456824512534
 }
]

Similarly, the selectivity of (sourceairport = 'SFO') is ~0.0079 (i.e., 249 of 31,592 docs).

SELECT (SELECT RAW count(*) FROM 'travel-sample' t where sourceairport = "SFO")
[0]/
 (SELECT RAW count(*) FROM 'travel-sample' t1)[0] as selectivity;
[
 {
 "selectivity": 0.007881742213218537
 }
]

Hence, using the index def_sourceairport should be much more efficient.

Use the index def_sourceairport:

EXPLAIN SELECT destinationairport, stops
FROM 'travel-sample'

211

USE INDEX (def_sourceairport)
WHERE type = "route" AND sourceairport = "SFO";
[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "def_sourceairport",
 "index_id": "c36ffb6c9739dcc9",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"SFO\""
],
 "Inclusion": 3,
 "Low": [
 "\"SFO\""
]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "keyspace": "travel-sample",
 "namespace": "default"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "((('travel-sample'.'type') = \"route\") and (('trav-

212

el-sample'.'sourceairport') = \"SFO\"))"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('travel-sample'.'destinationairport')"
 },
 {
 "expr": "('travel-sample'.'stops')"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 "text": "SELECT destinationairport, stops\nFROM 'travel-sample'\nUSE INDEX
(def_sourceairport) \nWHERE type = \"route\" AND sourceairport = \"SFO\";"
 }
]

As expected, this query ran much more efficiently, and took (on average) 18msec.

If no specific index is used (or multiple indexes are specified), N1QL does IntersectScan with all

available satisfying indexes:

EXPLAIN SELECT destinationairport, stops
FROM 'travel-sample'
USE INDEX (def_sourceairport, def_type)
WHERE type = "route" AND sourceairport = "SFO";
[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IntersectScan",
 "scans": [

213

 {
 "#operator": "IndexScan",
 "index": "def_type",
 "index_id": "e23b6a21e21f6f2",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"route\""
],
 "Inclusion": 3,
 "Low": [
 "\"route\""
]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "IndexScan",
 "index": "def_sourceairport",
 "index_id": "c36ffb6c9739dcc9",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"SFO\""
],
 "Inclusion": 3,
 "Low": [
 "\"SFO\""
]
 }
 }
],
 "using": "gsi"

214

 }
]
 },
 {
 "#operator": "Fetch",
 "keyspace": "travel-sample",
 "namespace": "default"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "((('travel-sample'.'type') = \"route\") and (('trav-
el-sample'.'sourceairport') = \"SFO\"))"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('travel-sample'.'destinationairport')"
 },
 {
 "expr": "('travel-sample'.'stops')"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 "text": "SELECT destinationairport, stops\nFROM 'travel-sample'\nUSE IN-
DEX (def_sourceairport, def_type) \nWHERE type = \"route\" AND sourceairport =

215

\"SFO\";"
 }
]

This query also ran very efficiently in 20msec.

Summary

Run times with the individual indexes and IntersectScan are shown in this chart. Note that the

latency with the IntersectScan is almost same as that with the index def_sourceairport because

the selectivities of the conjunctive predicate is the same as that of (sourceairport = 'SFO').

Basically, the soruceairport field exists only in the type = 'route' documents in travel-sample.

Hope this gives some insights into the intricacies involved in achieving query performance

and the interplay between various factors such as the query, predicates, selectivities, and

index-type.

Couchbase Server 4.6 and Couchbase Server 5.0 is available now. It has a bunch of cool

performance optimizations in N1QL.

https://www.couchbase.com/downloads
https://www.couchbase.com

216

217

THE LATEST PERFORMANCE TRICKS IN N1QL
Author: Prasad Varakur

Boost N1QL Queries With Couchbase 4.5.1

In this article, I will share few awesome N1QL performance enhancements available in

Couchbase Server 4.5.1. While some of these generically help all N1QL queries, a few

improvements are specific in nature and significantly boost the performance of some kind of

queries. For each of the improvements, I briefly explain the feature and show some numbers.

My earlier article Apps in N1QL Land: Magic With Pretty, Suffix, Update, and More, talks about

salient N1QL enhancements in 4.5.1 release whose performance characteristics will be explored

here. More N1QL features are described in this blog n1ql-functionality-enhancements-in-

couchbase-server-4.5.1.

Concurrent Bulk Fetch Processing

As with any mature query processing engine, N1QL processes queries in multiple phases, as

shown in Figure 1. N1QL also parallelizes many phases whenever possible (indicated by the

four boxes/arrows in Figure 1). In this query processing, one of the expensive phases is Fetch,

in which the query engine needs to retrieve all the relevant and matching documents from data

service nodes for further processing. This occurs when the query does not have a satisfying

covering index.

https://www.couchbase.com/products/n1ql
https://www.couchbase.com/
https://dzone.com/articles/couchbase-n1ql-continuing-to-simplify-transition-f
https://blog.couchbase.com/n1ql-functionality-enhancements-in-couchbase-server-4.5.1/
https://blog.couchbase.com/n1ql-functionality-enhancements-in-couchbase-server-4.5.1/

218

For instance, consider following query that needs to process all airport-documents. This uses

the travel-sample bucket that is shipped with Couchbase Server.

CREATE INDEX def_type ON 'travel-sample'(type);
SELECT * FROM 'travel-sample' WHERE type = "airport";

While processing this query, N1QL can use the index def_type (which is pre-created when the

sample bucket is installed) and gets all the document keys matching the predicate. Note that

N1QL uses the predicate-push down technique to index to retrieve all airport-document keys.

Then, in the Fetch phase, N1QL fetches all the full documents corresponding to the keys

obtained in step1.

Prior to Couchbase Server 4.5.1, N1QL does use multiple threads to process the fetch. However,

when fetching a lot of documents, especially with many queries bombarding on N1QL, the

thread management becomes very important for performance. To get a feel, consider a

moderate load of 200 queries per second and each query trying to fetch 1,000 documents.

It’s a non-trivial task to efficiently create and manage threads to process those 200K fetch

requests while being optimally aligned with the available CPU and cores.

In Couchbase Server 4.5.1, N1QL enhanced the management of fetch-phase threads to use a

common pool of worker threads to process all the fetch requests (see all threads in a box, in

Figure 2 below). The number of worker threads is optimally chosen according to the available

CPUs so that all fetches are concurrently processed minimizing thread management overhead.

This approach uses CPU and memory resources more efficiently, reuses threads, and prevents

unnecessary creation and recreation of temporary threads.

https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html

219

Note that as with earlier releases, N1QL continues to use parallel processing (dictated by

configuration parameter max_parallelism) to retrieve documents with multiple parallel

fetch requests to data service nodes. In 4.5.1, documents retrieved in each fetch request are

concurrently processed using a worker-thread-pool. The thread pool is automatically sized

for the available CPUs and cores.

This is not just some fancy way of processing the queries, but it shows real results. At least, in

internal throughput tests, I have noticed a significant performance boost for range queries and

some point-queries. The above charts show the performance gain is consistently better, and

in some cases, tests got up to eight times throughput (y-axis). Obviously, better performance

gains are realized if the query fetches more documents. The x-axis is just the test case number,

showing different tests with varying variables such as point/range queries, index storage type

(MOI, GSI), scan consistency etc.

In summary, it is an interesting journey to discover the performance hidden in the thread

management overheads. Kudos to the smart engineers! Note that the performance numbers

vary depending on various factors such as:

•	 ●	 Type of index storage, i.e., ForestDB vs. Memory Optimized Indexes.

•	 ●	 Query scan consistency, i.e., not-bounded or request_plus.

•	 ●	 Query predicates that dictate the number of document keys returned by the index 	

	 and hence the number of documents fetched and processed.

•	 ●	 Operating system, i.e., Linux, Windows Server, etc

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-rest-api/index.html

220

Efficient LIKE '%foo%' Queries

Pattern matching regular expressions is certainly one of the expensive operations in query pro-

cessing. Typically, LIKE 'foo%' queries can be implemented efficiently with a standard index

because the first few characters are fixed. However, not very often we can find efficient tech-

niques to process LIKE '%foo%', where the search string contains a leading wildcard.

In Couchbase server 4.5.1, N1QL introduced a novel technique to solve this problem efficiently,

by creating an Array Index on all possible suffix substrings of the index key. The new N1QL

function SUFFIXES() produces an array of all possible suffixes. For example, the query SELECT
name FROM default WHERE name LIKE "%foo%" is rewritten into creating the suffix-array-

index and magically replacing the LIKE "%foo%" predicate with LIKE "foo%" (without the

leading wildcard).

This brings magnitude performance boost to LIKE queries. This smart technique is explained

in detail in my earlier blog Apps in N1QL Land: Magic With Pretty, Suffix, Update, and More.

Let’s look at an example showing that the performance gain is real and tangible. In my laptop

testing, I got an impressive ~6.5 times faster latency. This uses the travel-sample documents

and bucket shipped with Couchbase Server.

Using the normal index def_type, queries are run using the Couchbase query CBQ shell.

cbq> SELECT * FROM 'travel-sample' USE INDEX(def_type)
 > WHERE type = "landmark" AND title LIKE "%land%";
 ….
 "metrics": {
 "elapsedTime": "120.822583ms",
 "executionTime": "120.790099ms",
 "resultCount": 227,
 "resultSize": 279707
 }

Using the suffixes-based array index and accordingly modified equivalent query:

cbq> CREATE INDEX idx_title_suffix
 ON 'travel-sample'(DISTINCT ARRAY s FOR s IN SUFFIXES(title) END)
 WHERE type = "landmark";
cbq> SELECT * FROM 'travel-sample' USE INDEX(idx_title_suffix)
 > WHERE type = "landmark" AND
 > ANY s IN SUFFIXES(title) SATISFIES s LIKE "land%" END;
...
 "metrics": {

https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/indexing-arrays.html
https://dzone.com/articles/couchbase-n1ql-continuing-to-simplify-transition-f
https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html
https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html
https://developer.couchbase.com/documentation/server/4.5/tools/cbq-shell.html

221

 "elapsedTime": "18.817681ms",
 "executionTime": "18.795954ms",
 "resultCount": 227,
 "resultSize": 279707
 }

Query Setting pretty Saves ~30%

It is an interesting fact that, on average, the white space overhead in a pretty-formatted JSON

documents is around 30%. You can check the overhead in your JSON documents as explained

below (in Linux):

•	 ●	 If you have a formatted JSON document, you can trim all the white space characters: 	

	 varakurprasad$ cat pretty-json-doc.json | tr -d " \t\n\r" > not-pretty-json-doc.	
	 json

•	 ●	 If you have an unformatted JSON document, you can simply format it using python2.6 	

	 or later version: varakurprasad$ cat not-pretty-json-doc.json | python -m json.tool 	
	 > pretty-json-doc.json

•	 ●	 Of course, if you have the documents in Couchbase already, you can use this new N1QL 	

	 parameter pretty to check the overhead.

This formatting overhead can be a significant component in your query performance, especially

when the queries produce large result documents. More interestingly, note that all the pretty

formatting does not make much sense to an application program that is running the queries. In

fact, the applications mostly use a JSON parser to process the query results and discard all the

whitespace formatting.

Pretty is a new N1QL parameter introduced in 4.5.1 release that can enable or disable pretty

formatting of the query results. The parameter can be:

•	 ●	 Set to true or false in the CBQ shell: cbq> \SET -pretty false;.

•	 ●	 Passed to the N1QL service process CBQ-engine as command line parameters.

•	 ●	 Passed as query parameter with REST calls.

Let’s look at the numbers showing performance gain with pretty. Consider the `travel-sample`

bucket, and the query select * from 'travel-sample'

•	 ●	 With pretty = true , this query took ~6.16sec in my macbook-pro.

•	 ●	 With pretty = false , same query ran in 2.2 sec.

•	 That’s a straight 3 times better performance! Find a detailed example in my earlier blog 	

222

	 Apps in N1QL Land: Magic With Pretty, Suffix, Update, and More.

Streaming Through DISTINCT Operator

Typically, a DISTINCT operator used in queries is blocking in nature. This means that it first waits

for all the input records to be available and then processes them to find the records with values

of a given field in the record.

N1QL enhances the DISTINCT operator to stream process the input records. In 4.5.1, DISTINCT

operator scans the input and emits the distinct values as it progresses. With the efficient

streaming algorithm, now DISTINCT consumes much less memory besides CPU cycles. This

significantly improves query performance, especially if you have a large document set, and are

using distinct on an attribute with low cardinality (such as state or country).

Note that, this also preserves the order of input, and consequently retains and leverages the

index-order of the documents. Hence, queries with ORDER BY clause will benefit further by

avoiding sort-processing.

Altogether, this significantly improves the response times seen by the applications, as they

will start receiving the query results as soon as they are available, while N1QL is processing

and producing subsequent results. This optimization is applicable to usage of distinct in various

scenarios such as, query projections, union queries, and part of intersect, intersect all, except,

except all, etc.

Efficient Memory Usage for Processing Projections

Processing of projections in queries is a memory-intensive operation especially when using *

as projection-list. With this enhancement, N1QL optimized the memory allocation and memory

usage algorithm to consume much less memory and reduced the over allocation and buffer.

Depending on query, we have seen magnitude reduction in memory usage (for example, few

GB to a couple hundred MB) and overall faster query processing efficiently.

Optimization for Processing IN With Parameters

This improvement optimized processing of queries which have the IN-clause used with

parameters. This optimization specifically improves the usage of the available secondary

indexes more precisely for pushing down the IN-clause predicate to index. For example,

following query takes the parameter $city which is used in the IN predicate:

cbq> \set -$city "Dublin" ;
cbq> explain select city from 'travel-sample' where city IN ["Santa Monica",
$city];

Let’s see how the query executes. Without this optimization, a full scan of the index is

performed (when parameters are involved), which obviously results in a much more expensive

https://dzone.com/articles/couchbase-n1ql-continuing-to-simplify-transition-f

223

execution of the query because full-scan is a range scan over all entries in the index and returns

all documents keys in the index.

cbq> \set -$city "Dublin" ;
cbq> explain select meta().id, city from 'travel-sample' where city IN ["Santa
Monica", $city];
{
 "requestID": "82251ffa-7a9b-4c79-92ef-f549b2e2ee9f",
 "signature": "json",
 "results": [
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "covers": [
 "cover (('travel-sample'.'city'))",
 "cover ((meta('travel-sample').'id'))"
],
 "index": "def_city",
 "index_id": "64a2b5261a86839d",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "Inclusion": 0,
 "Low": [
 "null"
]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {

224

 "#operator": "Filter",
 "condition": "(cover (('travel-sam-
ple'.'city')) in [\"Santa Monica\", $city])"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "cover ((meta('travel-sam-
ple').'id'))"
 },
 {
 "expr": "cover (('travel-sam-
ple'.'city'))"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 }
]
 },
 "text": "select meta().id, city from 'travel-sample' where city IN
[\"Santa Monica\", $city]"
 }
],
 "metrics": {
 "elapsedTime": "65.649232ms",
 "executionTime": "65.630462ms",
 "resultCount": 55,
 "resultSize": 2524
 }

Note that, following span is generated for the index lookup, with represents a full scan of

the index.

 "spans": [
 {
 "Range": {

225

 "Inclusion": 0,
 "Low": [
 "null"
]
 }
 }
],

Further, note that if it the query is not covered by the index scan (example: * in the projection),

then it subsequently results in a fetch of all the documents from data service. However, most of

these fetched documents may be discarded by N1QL when the IN predicate is processed later in

the filtering-phase (refer to the N1QL execution phases in the beginning of this blog).

In Couchbase server 4.5.1, N1QL implemented an optimization for processing such queries. Now,

N1QL generates precise lookup spans to index for each of the values in the IN-clause and avoids

the expensive full scan. Note the spans[] array in the following EXPLAIN output that shows two

index lookup spans generated for each of the IN-values (including the parameter $city).

cbq> \set -$city "Dublin" ;
cbq> explain select city from 'travel-sample' where city IN ["Santa Monica",
$city];
{
 "requestID": "aef94329-a1cb-4880-add0-c2efee7d1d8a",
 "signature": "json",
 "results": [
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "covers": [
 "cover (('travel-sample'.'city'))",
 "cover ((meta('travel-sample').'id'))"
],
 "index": "def_city",
 "index_id": "ad4c900681b6abe9",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {

226

 "Range": {
 "High": [
 "\"Santa Monica\""
],
 "Inclusion": 3,
 "Low": [
 "\"Santa Monica\""
]
 }
 },
 {
 "Range": {
 "High": [
 "$city"
],
 "Inclusion": 3,
 "Low": [
 "$city"
]
 }
 }
],
 "using": "gsi"
 }
 },
 "metrics": {
 "elapsedTime": "14.564755ms",
 "executionTime": "14.53648ms",
 "resultCount": 55,
 "resultSize": 2524
 }

227

Finally, note that this query ran almost 4.5 times faster (y-axis in the following chart is latency

in ms). Note that, performance gain entirely depends on the selectivity of the IN predicate.

That means that if the IN predicate matches only few documents, then the gain because of

this optimization is much more pronounced than when the IN predicate matches many or all

documents (in which case it tends to reach closer to a full scan anyway).

Summary

N1QL incorporated many performance and feature enhancements in Couchbase Server 4.5.1

as well as in the Couchbase Server 4.6 and above release. This article highlights some of the

interesting performance enhancements. My earlier article Apps in N1QL Land: Magic With

Pretty, Suffix, Update, and More, talks about salient N1QL enhancements in 4.5.1 release.

https://www.couchbase.com/downloads
https://www.couchbase.com/downloads
https://dzone.com/articles/couchbase-n1ql-continuing-to-simplify-transition-f
https://dzone.com/articles/couchbase-n1ql-continuing-to-simplify-transition-f

228

229229

APPS IN N1QL LAND: MAGIC WITH PRETTY,
SUFFIX, UPDATE, AND MORE
Author: Prasad Varakur

Couchbase N1QL

Couchbase is all about enabling more and more enterprise applications to leverage and adopt

NoSQL/JSON data model. And, N1QL is the wonderland for applications which need all the

great benefits of the JSON/Document databases, and don’t want to lose the power of query

language like SQL. In fact, N1QL is SQL++ and is built with tons of features to simplify the

transition from traditional relational databases, and achieve best of both worlds.

In the latest release, Couchbase Server 4.5.1 brings multiple functionality, usability, and

performance improvements in N1QL. While some of the new improvements enhance existing

functionality, others, such as SUFFIXES() and pretty, enrich N1QL querying with magnitude

performance improvement.

In this blog, I will show glimpses of the wonder land, and explain some of this magic.

See what’s new and release notes for full list of N1QL enhancements.

Indexing With SUFFIXES() for Efficient LIKE Queries

Pattern matching is a widely used functionality in SQL queries, and is typically achieved using

the LIKE operator. Especially, efficient wildcard matching is very important. LIKE ‘foo%’ can be

implemented efficiently with a standard index, as it has fixed prefix substring. But LIKE ‘%foo%’

is generally expensive. Such pattern matching with leading wildcard is vital for every application

that has a search box to match partial words or to smart-suggest matching text. For example:

•	 A travel booking site that wants to pop-up matching airports as the user starts to enter a

few letters of the airport name.

•	 A user finding all e-mails with a specific word or partial word in the subject.

•	 Finding all topics of a forum or blog posts with specific keywords in the title.

In Couchbase Server 4.5.1, N1QL addresses this problem by adding a new string function —

SUFFIXES(), and combining that with the Array Indexing functionality introduced in Couchbase

Server 4.5. Together, it brings a magnitude of difference to the performance of LIKE queries

with leading wildcards such as LIKE "%foo%". The core functionality of SUFFIXES() is very

simple. Basically, it produces an array of all possible suffix substrings of a given string.

For example,

https://www.couchbase.com/
https://www.couchbase.com/products/n1ql
https://arxiv.org/pdf/1405.3631v8.pdf
https://www.couchbase.com/new
https://developer.couchbase.com/documentation/server/4.5/introduction/whats-new.html
https://developer.couchbase.com/documentation/server/4.5/release-notes/relnotes.html
https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/indexing-arrays.html

230

SUFFIXES("N1QL") = ["N1QL", "1QL", "QL", "L"]
The following picture depicts a unique technique to combine the SUFFIXES() function with

Array Indexing to boost LIKE query performance.

1.	 Step 1 (in blue) shows the array of suffix substrings generated by SUFFIXES()

for doc1.title

2.	 Step 2 (in yellow) shows the Array Index created with the suffix substrings generated in

step 1. Note that the index-entry for "wood" points to doc1 and doc4, as that is one of the

suffix substrings of titles of both the documents. Similarly, "ood" points to doc1, doc4,

and doc8.

3.	 Step 3 (in green) runs a query equivalent to SELECT title FROM bucket WHERE title
LIKE "%wood%". The LIKE predicate is transformed to use the Array Index using the ANY

construct. See the documentation for more details on using array indexing.

oo Note that the leading wildcard is removed in the new LIKE "wood%" predicate.

oo This is accurate transformation because the array index lookup for "wood" points

to all documents whose title has trailing substring "wood"
4.	 In Step 4, N1QL looks up in the Array Index to find all documents matching "wood%". That

returns {doc1, doc3, doc4}, because:

oo The index lookup produces a span, which gets documents from "wood" to "wooe"
oo doc1 and doc4 are matched because of index entry "wood" that is generated by

the SUFFIXES() when creating the array index.

oo doc3 is matched because of its corresponding index-entry for "woodland"
5.	 Finally, in step 5, N1QL returns the query results.

Let’s see a working example with the travel-sample documents/bucket, which is shipped

with the Couchbase Server product. This showed a 10-12x boost in performance for the

example query.

1.	 Assume a document with a string field whose value is few words of text or a phrase.

For example, title of a landmark, address of a place, name of restaurant, full name of

a person/place etc., For this explanation, we consider title of landmark documents

in travel-sample.

2.	 Create secondary index on title field using SUFFIXES() as:

 CREATE INDEX idx_title_suffix
 ON 'travel-sample'(DISTINCT ARRAY s FOR s IN SUFFIXES(title) END)

https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html

231

 WHERE type = "landmark";

3.	 SUFFIXES(title) generates all possible suffix substrings of title, and the index will have

entries for each of those substrings, all referencing to corresponding documents.

4.	 Now consider following query, which finds all docs with substring "land" in title. This

query produces following plan and runs in roughly 120ms on my laptop. You can clearly

see, it fetches all landmark documents, and then applies the LIKE "%land%" predicate to

find all matching documents.

EXPLAIN SELECT * FROM 'travel-sample' USE INDEX(def_type) WHERE type = "landmark" AND
title LIKE "%land%";
[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "def_type",
 "index_id": "e23b6a21e21f6f2",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"landmark\""
],
 "Inclusion": 3,
 "Low": [
 "\"landmark\""
]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "keyspace": "travel-sample",
 "namespace": "default"
 },

232

 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "((('travel-sample'.'type') = \"landmark\") and (('trav-
el-sample'.'title') like \"%land%\"))"
 }
]
 }

In Couchbase 4.5.1, this query can be rewritten to leverage the array index idx_title_suffix
created in (2) above.

EXPLAIN SELECT title FROM 'travel-sample' USE INDEX(idx_title_suffix) WHERE type =
"landmark" AND
ANY s IN SUFFIXES(title) SATISFIES s LIKE "land%" END;
[
 {
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "idx_title_suffix",
 "index_id": "75b20d4b253214d1",
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"lane\""
],
 "Inclusion": 1,
 "Low": [
 "\"land\""
]

233

 }
 }
],
 "using": "gsi"
 }
 },
 {
 "#operator": "Fetch",
 "keyspace": "travel-sample",
 "namespace": "default"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition": "((('travel-sample'.'type') = \"landmark\") and any 's' in
suffixes(('travel-sample'.'title')) satisfies ('s' like \"land%\") end)"
 },

Note that:

•	 The new query in (4) uses LIKE "land%", instead of LIKE "%land%". The former predicate,

with no leading wildcard '%', produces a much more efficient index lookup than the latter

one, which can’t push down the predicate to index.

•	 The array index idx_title_suffix is created with all possible suffix substrings of title, and

hence lookup for any suffix substring of title can find successful match.

•	 In the above 4.5.1 query plan in (4), N1QL pushes down the LIKE predicate to the index

lookup, and avoids additional pattern-matching string processing. This query ran in 18ms.

•	 In fact, with following covering Array Index, the query ran in 10ms, which is 12x faster.

	 CREATE INDEX idx_title_suffix_cover
	 ON 'travel-sample'(DISTINCT ARRAY s FOR s IN SUFFIXES(title) END, title)
	 WHERE type = "landmark";

234

See this blog for details on a real-world application of this feature.

UPDATE Nested Arrays

Enterprise applications often have complex data and need to model JSON documents with

multiple levels of nested objects and arrays. N1QL supports complex expressions and language

constructs to navigate and query such documents with nested arrays. N1QL also supports

Array Indexing, with which secondary indexes can be created on array elements, and

subsequently queried.

In Couchbase Server 4.5.1, the UPDATE statement syntax is improved to navigate nested arrays

in documents and update specific fields in nested array elements. The FOR-clause of the UPDATE

statement is enhanced to evaluate functions and expressions, and the new syntax supports

multiple nested FOR expressions to access and update fields in nested arrays.

Consider the following document with a nested array like:

{
 items: [
 {
 subitems: [
 {
 name: "N1QL"
 },
 {
 name: "GSI"
 }
]
 }
],
 docType: "couchbase"
}

The new UPDATE syntax in 4.5.1 can be used in different ways to access and update

nested arrays:

UPDATE default SET s.newField = 'newValue'
FOR s IN ARRAY_FLATTEN(items[*].subitems, 1) END;

UPDATE default
SET s.newField = 'newValue'
FOR s IN ARRAY_FLATTEN(ARRAY i.subitems FOR i IN items END, 1) END;

UPDATE default

https://dzone.com/articles/a-couchbase-index-technique-for-like-predicates-wi
https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/indexing-arrays.html

235

SET i.subitems = (ARRAY OBJECT_ADD(s, 'newField', 'newValue')
 FOR s IN i.subitems END) FOR i IN items END;

Note that:

•	 The SET-clause evaluates functions such as OBJECT_ADD() and ARRAY_FLATTEN()

•	 FOR constructs can be used in a nested fashion with expressions to process array elements

at different nest-levels.

For a working example, consider the sample bucket travel-sample, shipped with 4.5.1.

1.	 First, let’s add a nested array of special flights to the array schedule in the travel-sample

bucket, for some documents.

UPDATE 'travel-sample'
SET schedule[0] = {"day" : 7, "special_flights" :
 [{"flight" : "AI444", "utc" : "4:44:44"},
 {"flight" : "AI333", "utc" : "3:33:33"}
] }
WHERE type = "route" AND destinationairport = "CDG" AND sourceairport = "TLV";

2.	 The following UPDATE statement adds a third field to each special flight:

UPDATE 'travel-sample'
SET i.special_flights = (ARRAY OBJECT_ADD(s, 'newField', 'newValue')
 FOR s IN i.special_flights END)
 FOR i IN schedule END
WHERE type = "route" AND destinationairport = "CDG" AND sourceairport = "TLV";
SELECT schedule[0] from 'travel-sample'
WHERE type = "route" AND destinationairport = "CDG" AND sourceairport = "TLV"
LIMIT 1;
[
 {
 "$1": {
 "day": 7,
 "special_flights": [
 {
 "flight": "AI444",
 "newField": "newValue",
 "utc": "4:44:44"
 },
 {
 "flight": "AI333",
 "newField": "newValue",

236

 "utc": "3:33:33"
 }
]
 }
 }
]

Performance with new Query setting

Pretty!! Pretty!! pretty!! Yes, pretty is a super impressive new query setting in N1QL that can

enable or disable pretty formatting of query results. You might ask, what’s so great about it?

And why anybody may want to disable the beautiful pretty formatting of the JSON output.

Answer is P E R F O R M A N C E!!

As the old adage goes, there are no free lunches. Pretty formatting query results comes with its

own expense:

1.	 First, a quick fact is that the white space (tabs, spaces, newlines) characters in a pretty-

formatted JSON document consume almost a third of its size.

oo So, simply cutting down on the beautification will save all the raw bytes flowing

over the network.

oo Moreover, consider the corresponding saving on the memory and processing

resources of N1QL service.

oo Altogether, savings are pretty significant.

2.	 The pretty output format is good for human readable scenarios, with human-manageable

result sizes.

oo 	However, real world applications and computer programs run queries much more

often than humans — and process much bigger query results.

oo For these, what matters is performance and efficiency; not pretty formatting.

In fact, such formatting is an overhead to the JSON parser and application and

is usually discarded. Typically, applications have their own presentation layer to

format the data appropriately for respective users.

The new query parameter pretty in 4.5.1 allows to enable/disable formatting a query result.

The parameter can be:

•	 Set to true or false in the cbq shell.

cbq> \SET -pretty false;

varakurprasad$./cbq -u=Administrator -p=password
Connected to : http://localhost:8091/. Type Ctrl-D or \QUIT to exit.
cbq> \SET -pretty false;

https://developer.couchbase.com/documentation/server/4.5/tools/cbq-shell.html

237

cbq> select id, name from 'travel-sample' limit 1;
{
"requestID": "e9d885bc-2378-4345-bf44-a336fbabce77",
"signature": {"id":"json","name":"json"},
"results": [
{"id":10,"name":"40-Mile Air"}
],
"status": "success",
"metrics": {"elapsedTime": "9.829246ms","executionTime": "9.805407ms","result-
Count": 1,"resultSize": 30}
}

•	 Passed to the N1QL service process cbq-engine as command line parameters.

•	 Passed as Query parameter with REST calls. See example below.

By default, it is set to true. When set to false, the whitespace characters are stripped from

the query results. The performance benefits are significantly visible when queries produce

large results, and it, of course, depends on the percentage of white-space overhead in your

documents.

For example, following query which selects all documents from travel-sample, run almost

3x faster when pretty = false. Also, note the size of the result set, which is one-third of the

pretty formatted result.

With pretty = true

varakurprasad$ time curl -v http://localhost:8093/query/service -d "pretty=true&-
statement=SELECT * from \'travel-sample\'" | tail -15
* Hostname was NOT found in DNS cache
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0*
Trying ::1...
* Connected to localhost (::1) port 8093 (#0)
* Server auth using Basic with user 'travel-sample'
> POST /query/service HTTP/1.1
> Authorization: Basic dHJhdmVsLXNhbXBsZTpoZWxsbw==
> User-Agent: curl/7.37.1
> Host: localhost:8093
> Accept: */*
> Content-Length: 51
> Content-Type: application/x-www-form-urlencoded
>

238

} [data not shown]
* upload completely sent off: 51 out of 51 bytes
< HTTP/1.1 200 OK
< Content-Type: application/json; version=1.6.0
< Date: Sat, 15 Oct 2016 02:04:09 GMT
< Transfer-Encoding: chunked
<
{ [data not shown]
100 103M 0 103M 100 51 16.6M 8 0:00:06 0:00:06 --:--:-- 17.2M
* Connection #0 to host localhost left intact
],
 "sourceairport": "TLV",
 "stops": 0,
 "type": "route"
 }
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "6.165034483s",
 "executionTime": "6.164993497s",
 "resultCount": 31591,
 "resultSize": 107830610
 }
}
real 0m6.208s
user 0m5.704s
sys 0m0.373s

With pretty = false

Note that the total resultSize now is only 36.7MB, and the query ran in 2.2sec. This is 3X better

performance compared to pretty=true, which took 6.2sec and returned 107.8MB.

varakurprasad$ time curl -v http://localhost:8093/query/service -d "pretty=-
false&statement=SELECT * from \'travel-sample\'" | tail -5
* Hostname was NOT found in DNS cache
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0*
Trying ::1...
* Connected to localhost (::1) port 8093 (#0)

239

* Server auth using Basic with user 'travel-sample'
> POST /query/service HTTP/1.1
> Authorization: Basic dHJhdmVsLXNhbXBsZTpoZWxsbw==
> User-Agent: curl/7.37.1
> Host: localhost:8093
> Accept: */*
> Content-Length: 52
> Content-Type: application/x-www-form-urlencoded
>
} [data not shown]
* upload completely sent off: 52 out of 52 bytes
< HTTP/1.1 200 OK
< Content-Type: application/json; version=1.6.0
< Date: Sat, 15 Oct 2016 02:03:29 GMT
< Transfer-Encoding: chunked
<
{ [data not shown]
100 35.1M 0 35.1M 100 52 15.9M 23 0:00:02 0:00:02 --:--:-- 15.9M
"status": "success",
"metrics": {"elapsedTime": "2.148354775s","executionTime": "2.148323137s","re-
sultCount": 31591,"resultSize": 36754457}
}
real 0m2.223s
user 0m1.977s
sys 0m0.141s

Enhancements to Dynamic Object Construction

N1QL already supports construction of JSON objects dynamically in queries. This immensely

helps in creating specifically constructed result objects in query projection-lists. Couchbase

server 4.5.1 extends the power of expressions and enriches the dynamic object creation and

object processing in N1QL queries.

1.	 In Couchbase Server 4.5.1, N1QL allows both names and values of object fields to be

arbitrary expressions. In earlier versions, the names of fields are required to be static

strings. If a name does not evaluate to a string, the result of the object construction

is NULL. For example:

SELECT { UPPER(callsign) || "_key" : callsign || ":" || country || ":" || name }
AS myobj
FROM 'travel-sample'
WHERE type = 'airline' limit 1;
[

https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/constructionops.html

240

 {
 "myobj": {
 "MILE-AIR_key": "MILE-AIR:United States:40-Mile Air"
 }
 }
]

2.	 When constructing objects in a N1QL query, the names of fields in name-value pairs is

made optional in 4.5.1. For example, the following query implicitly assigns names "type"

and "name" for respective values:

SELECT {type, name} AS myobj FROM 'travel-sample' LIMIT 1;
[
 {
 "myobj": {
 "type": "airport"
 "name": "airport_123"
 }
 }
]

New Array Function: ARRAY_INTERSECT()

ARRAY_INTERSECT() function takes two or more arrays as parameters and returns the

intersection of the input arrays as the result, i.e the array containing values that are present in

all the input arrays. It returns an empty array if there are no common array elements. For more

information, see documentation. For example, following query finds the hotels that are liked by

Brian or Lilian, in the travel-sample bucket shipped with Couchbase Server 4.5.1.

SELECT meta().id, ARRAY_INTERSECT(public_likes, ["Brian Kilback", "Lilian Mc-
Laughlin"]) AS likes
FROM 'travel-sample' WHERE type = 'hotel'
ORDER BY likes DESC
LIMIT 4;
[
 {
 "id": "hotel_10025",
 "likes": [
 "Lilian McLaughlin",
 "Brian Kilback"
]
 },
 {

https://developer.couchbase.com/documentation/server/4.5/travel-app/travel-app-data-model.html
https://www.couchbase.com/downloads

241

 "id": "hotel_10026",
 "likes": []
 },
 {
 "id": "hotel_10064",
 "likes": []
 },
 {
 "id": "hotel_10063",
 "likes": []
 }
]

Download Couchbase Server 4.5.1 or higher. Learn more at N1QL documentation.

https://www.couchbase.com/downloads
https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/index.html

242

Use Cases

244

245

SQL ON TWITTER: ANALYSIS MADE EASY
USING N1QL
Author: Keshav Murthy

"If I had more time, I would have written a shorter letter" — Blaise Pascal

There have been lengthy articles on analyzing Twitter data. From Cloudera: here, here, and here.

More from Hortonworks here and here. This one from Couchbase is going to be short, save the

examples and results.

Step 1: Install Couchbase 4.5 or higher. Use the Couchbase console create a bucket called

Twitter and CREATE PRIMARY INDEX on Twitter using the query workbench or cbq shell.

CREATE PRIMARY INDEX ON twitter;

Step 2: Request your Twitter archive. Once you receive it, unzip it. (You can use larger Twitter

archives as well):

cd <to the unzipped location>/data/js/tweets

https://en.wikipedia.org/wiki/Blaise_Pascal
https://blog.cloudera.com/blog/2012/09/analyzing-twitter-data-with-hadoop/
http://blog.cloudera.com/blog/2012/10/analyzing-twitter-data-with-hadoop-part-2-gathering-data-with-flume/
https://blog.cloudera.com/blog/2012/11/analyzing-twitter-data-with-hadoop-part-3-querying-semi-structured-data-with-hive/
https://hortonworks.com/blog/discovering-hive-schema-in-collections-of-json-documents/
https://hortonworks.com/blog/howto-use-hive-to-sqlize-your-own-tweets-part-two-loading-hive-sql-queries/
https://www.couchbase.com
https://www.couchbase.com/new%20redirect;
https://developer.couchbase.com/documentation/server/4.5/introduction/whats-new.html
https://www.youtube.com/watch?v=bJUl-brAqvk
https://twitter.com/login?redirect_after_login=%2Fsettings%2Faccount

246

Step 3:

$ for i in 'ls';
 do
 grep -i -v ^Grailbird $i > $i.out ;

 done

Step 4: Update your IP, username, and password before you run this:

for i in 'ls *.out';
do
 /opt/couchbase/bin/cbbackupmgr json -host http://127.0.0.1:8091 --username
	 Administrator --password password --bucket twitter --dataset file:///home/keshav/	
	 mytweets/data/js/tweets/$i --format list --generate-key %id_str%;
	 done

Step 5: There is no step 5!

Log into Couchbase’s query workbench or cbq shell and start playing! Simply use SQL-based

N1QL to query and play with the data. This online interactive tutorial will get you started

with N1QL.

Here are the example queries on my Twitter archive.

1. Give me the count of my tweets.

SELECT COUNT(*) my_tweet_count
FROM twitter
LIMIT 1;

Results:
[
 {
 "my_tweet_count": 1658
 }
]

2. Get me a sample Twitter document.

SELECT *
FROM Twitter
LIMIT 1;

Results: Twitter document is rich. It has nested objects, arrays, and arrays of objects.

[
 {
 "twitter": {

https://twitter.com/login?redirect_after_login=%2Fsettings%2Faccount
https://developer.couchbase.com/documentation/server/4.5/getting-started/first-n1ql-query.html
https://developer.couchbase.com/documentation/server/4.5/getting-started/first-n1ql-query.html
https://query-tutorial.couchbase.com/tutorial/

247

 "created_at": "2011-08-19 18:09:31 +0000",
 "entities": {
 "hashtags": [
 {
 "indices": [
 79,
 88
],
 "text": "informix"
 },
 {
 "indices": [
 89,
 99
],
 "text": "warehouse"
 }
],
 "media": [],
 "urls": [
 {
 "display_url": "bit.ly/pkFdF4",
 "expanded_url": "http://bit.ly/pkFdF4",
 "indices": [
 113,
 132
],
 "url": "http://t.co/GnKGAKB"
 }
],
 "user_mentions": []
 },
 "geo": {},
 "id": 104615993220927490,
 "id_str": "104615993220927488",
 "source": "Twitter Web Client",
 "text": "No tuning required! Lester took his queries from ~10 hours to 15 minutes
using #informix #warehouse accelerator. http://t.co/GnKGAKB",
 "user": {
 "id": 282131568,
 "id_str": "282131568",
 "name": "Keshav Murthy",

248

 "profile_image_url_https":
	 "https://pbs.twimg.com/profile_images/670081620205023233/rHlKlkMC_normal.jpg",
 "protected": false,
 "screen_name": "rkeshavmurthy",
 "verified": false
 }
 }
 }
]

3. What days did I tweet most?

SELECT SUBSTR(created_at, 0, 10) tweet_date,
 COUNT(1) tweet_count
FROM twitter
GROUP BY SUBSTR(created_at, 0, 10)
ORDER BY COUNT(1) DESC
LIMIT 5;
[
 {
 "tweet_count": 67,
 "tweet_date": "2013-11-05"
 },
 {
 "tweet_count": 60,
 "tweet_date": "2013-11-06"
 },
 {
 "tweet_count": 42,
 "tweet_date": "2014-04-30"
 },
 {
 "tweet_count": 41,
 "tweet_date": "2013-11-04"
 },
 {
 "tweet_count": 41,
 "tweet_date": "2014-04-28"
 }
]

249

4. Give me the top 5 hashtags and counts in my tweets:

SELECT ht.text hashtag,
 COUNT(1) htcount
FROM twitter UNNEST entities.hashtags ht
GROUP BY ht
ORDER BY COUNT(1) DESC
LIMIT 5;
[
 {
 "hashtag": "ibmiod",
 "htcount": 133
 },
 {
 "hashtag": "informix",
 "htcount": 31
 },
 {
 "hashtag": "IBMIOD",
 "htcount": 30
 },
 {
 "hashtag": "informix",
 "htcount": 26
 },
 {
 "hashtag": "Informix",
 "htcount": 21
 }
]

(Yes, I worked for Informix and IBM!)

5. How many tweets have I done on Couchbase, N1QL, NoSQL, or SQL?

Because hashtags are stored in an array, you need to UNNEST it so you can group by

the hashtag.

SELECT UPPER(ht.text) hashtag,
 COUNT(1) htcount

FROM twitter UNNEST entities.hashtags ht
WHERE upper(ht.text) IN ['COUCHBASE', 'N1QL', 'NOSQL', 'SQL']
GROUP BY UPPER(ht.text)

https://developer.couchbase.com/documentation/server/4.5/n1ql/n1ql-language-reference/from.html

250

ORDER BY COUNT(1) DESC
[
 {
 "hashtag": "NOSQL",
 "htcount": 258
 },
 {
 "hashtag": "COUCHBASE",
 "htcount": 162
 },
 {
 "hashtag": "SQL",
 "htcount": 64
 },
 {
 "hashtag": "N1QL",
 "htcount": 18
 }
]

6. Let’s see who I’ve mentioned in my tweets and how many times?

SELECT UPPER(um.screen_name) umention,
 COUNT(1) htcount
FROM twitter UNNEST entities.user_mentions um
GROUP BY upper(um.screen_name)
ORDER BY count(1) DESC ;

I've only given partial results below. @N1QL and @Couchbase were top mentions. Note Twitter

itself doesn’t store the @ character in its data.

[
 {
 "htcount": 104,
 "umention": "N1QL"
 },
 {
 "htcount": 80,
 "umention": "COUCHBASE"
 },
…
]

251

7. Let’s get all the tweets I’ve mentioned @sangudi, creator of N1QL.

SELECT SUBSTR(created_at, 0, 10) posted,
 text AS tweet
FROM twitter
WHERE
 ANY u IN entities.user_mentions
 SATISFIES u.screen_name = 'sangudi'
 END
ORDER BY SUBSTR(created_at, 0, 10) DESC ;
[
 {
 "posted": "2016-06-10",
 "tweet": "JOIN and enjoy in Couchbase Server 4.5. tx 2 @sangudi\n#SQL #NoSQL
#Couchbase #MongoDB #JSON\nhttps://t.co/X9E0ghcx4L
https://t.co/AYnetU5MHF"
 },
 {
 "posted": "2016-05-14",
 "tweet": "Brining SQL to NoSQL: Rich, declarative Query for NoSQL, with @sangudi
\n at @NoCOUG \nhttps://t.co/mnpPYKNQeA\n#Couchbase #NoSQL #SQL #JSON"
 },
…
]

While this works fine, it scans the whole bucket using primary scan.

EXPLAIN SELECT SUBSTR(created_at, 0, 10) posted,
 text AS tweet
FROM twitter
WHERE
 ANY u IN entities.user_mentions
 SATISFIES u.screen_name = 'sangudi'
 END
ORDER BY SUBSTR(created_at, 0, 10) DESC ;

 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {

https://twitter.com/sangudi

252

 "#operator": "PrimaryScan",
 "index": "#primary",
 "keyspace": "twitter",
 "namespace": "default",
 "using": "gsi"
 },

Let’s create an index on this array element to make it go faster.

CREATE INDEX idxtwittername on twitter
 (ALL ARRAY u.screen_name FOR u IN entities.user_mentions END);

Now, see the plan for the same query. This uses the index and pushes down the predicate

to the index, making the query faster.

EXPLAIN SELECT SUBSTR(created_at, 0, 10) posted,
 text AS tweet
FROM twitter
WHERE
 ANY u IN entities.user_mentions
 SATISFIES u.screen_name = 'sangudi'
 END
ORDER BY SUBSTR(created_at, 0, 10) DESC ;
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "DistinctScan",
 "scan": {
 "#operator": "IndexScan",
 "index": "idxtwittername",
 "index_id": "df30f58c0e0b9677",
 "keyspace": "twitter",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "\"sangudi\""
],
 "Inclusion": 3,
 "Low": [
 "\"sangudi\""

253

]
 }
 }
],
 "using": "gsi"
 }
 },

Couchbase 4.5 makes it very easy to ingest JSON so you can get insight into your data.

For more advanced questions and advanced usage, use array.

Try it out with your own Twitter data or a public JSON archive. Create indexes on fields

and arrays. Ask more questions, find more insights!

https://www.couchbase.com

254

255255

WHAT’S IN A NEW YORK NAME? UNLOCK DATA.
GOV USING N1QL
Author: Keshav Murthy

Data.gov, started in 2009, has about 189,000 datasets. Data is published in XML, CSV, JSON,

HTML, PDF, and other formats. Data.gov aims to improve public access to high value,

machine-readable datasets generated by the Executive Branch of the Federal Government.

Lots of this data comes from the Socrata database. They also provide Socrata APIs to retrieve

the subset of the data that you need. Data is valuable. Insights are more valuable. Instead of

working with data trickle, let’s load all the data and analyze them.

We start this series using a dataset on a simple and seemingly inconsequential decision parents

make: baby names. Obviously, parents take this decision quite seriously. If New York is the

melting pot, let’s see what baby names those parents choose.

The techniques shown here will help you analyze not just this dataset, but all of the JSON

datasets in data.gov. Let’s try to understand all of Obama’s open data secrets!

The Most Popular Baby Names by Sex and Mother’s Ethnic Group, New York City dataset has

collected baby names in New York City from 2011 to 2014. You can see the raw data at this link.

The data is in a single JSON document and consists of two fields: meta and data. Meta contains

the description of the structure of the document and data, AKA metadata. Data contains data.

This structure comes from Socrata.

Here’s is the structure.

{
 "meta" : {
 "view" : {
 "id" : "25th-nujf",
 "name" : "Most Popular Baby Names by Sex and Mother's Ethnic Group, New York
City",
 "attribution" : "Department of Health and Mental Hygiene (DOHMH)",
 "averageRating" : 0,
 "category" : "Health",
 "createdAt" : 1382724894,
 "description" : "The most popular baby names by sex and mother's ethnicity
in New York City.",

https://www.data.gov
https://en.wikipedia.org/wiki/Data.gov
https://www.socrate.com/old/
https://www.socrate.com/old/
http://freakonomics.com/podcast/how-much-does-your-name-matter-a-new-freakonomics-radio-podcast/
https://www.data.gov
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742
https://data.cityofnewyork.us/api/views/25th-nujf/rows.json?accessType=DOWNLOAD

256

 "displayType" : "table",
…
 "columns" : [{
 "id" : -1,
 "name" : "sid",
 "dataTypeName" : "meta_data",
 "fieldName" : ":sid",
 "position" : 0,
 "renderTypeName" : "meta_data",
 "format" : { }
 }, {
 "id" : -1,
 "name" : "id",
 "dataTypeName" : "meta_data",
 "fieldName" : ":id",
 "position" : 0,
 "renderTypeName" : "meta_data",
 "format" : { }
 }
 ...
]
"data" : [[1, "EB6FAA1B-EE35-4D55-B07B-8E663565CCDF", 1, 1386853125, "399231",
1386853125, "399231", "{\n}", "2011", "FEMALE", "HISPANIC", "GERALDINE", "13",
"75"]
, [2, "2DBBA431-D26F-40A1-9375-AF7C16FF2987", 2, 1386853125, "399231",
1386853125, "399231", "{\n}", "2011", "FEMALE", "HISPANIC", "GIA", "21", "67"]
, [3, "54318692-0577-4B21-80C8-9CAEFCEDA8BA", 3, 1386853125, "399231",
1386853125, "399231", "{\n}", "2011", "FEMALE", "HISPANIC", "GIANNA", "49", "42"
]
...
]
}

Rest of the article is divided into two sections:

	 1. Transforming the data.gov JSON dataset to be easily accessible.

	 2. Querying the New York names dataset with N1QL.

257

1. Transforming data.gov JSON

While the data is JSON, the whole document is stored as a single document. Let’s see how

fast we can get insights.

We use Couchbase, a distributed NoSQL database and its built-in N1QL query language

designed to be SQL for JSON. You need to download and install Couchbase 4.5 to follow

along the following examples.

Step 1

Create two buckets, datagov and nynames, and create a primary index on both. Just 100

megabytes is sufficient for this data sets. And then create primary indices on both.

CREATE PRIMARY INDEX ON datagov;
CREATE PRIMARY INDEX ON nynames;

Step 2
Download the JSON document from this link.

Step 3
Create a file (insert.sql) with the INSERT statement and append the document. You need to

surround the source data with the INSERT statement highlighted here in blue.

INSERT INTO datagov VALUES("nyname01", {
 "meta" : {
 "view" : {
 "id" : "25th-nujf",
 "name" : "Most Popular Baby Names by Sex and Mother's Ethnic Group, New York
City",
 "attribution" : "Department of Health and Mental Hygiene (DOHMH)",
 "averageRating" : 0,
 "category" : "Health",
 "createdAt" : 1382724894,
 "description" : "The most popular baby names by sex and mother's ethnicity
in New York City.",
 "displayType" : "table",
 "downloadCount" : 1782,
 "indexUpdatedAt" : 1465427458,
 "newBackend" : false,
 "numberOfComments" : 0,
 "oid" : 6785037,
 "publicationAppendEnabled"

https://www.couchbase.com
https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
https://www.couchbase.com/downloads
https://catalog.data.gov/dataset/most-popular-baby-names-by-sex-and-mothers-ethnic-group-new-york-city-8c742

258

….
});

Step 4
Simply execute the statement via cbq.

$ cbq < insert.sql

Step 5
Now you have the whole data as a single document in a Couchbase bucket. This document is

a well-formed JSON. Because the data is stored as series of scalar values of arrays of arrays,

querying can be quite complex.

Step 6
Let’s simplify this by transforming the data into flattened JSON.

First, let’s list the full set of data fields.

SELECT meta.'view'.columns[*].fieldName
 FROM datagov;
[
 {
 "fieldName": [
 ":sid",
 ":id",
 ":position",
 ":created_at",
 ":created_meta",
 ":updated_at",
 ":updated_meta",
 ":meta",
 "brth_yr",
 "gndr",
 "ethcty",
 "nm",
 "cnt",
 "rnk"
]
 }
]

To transform the data, you can use the query below.

INSERT INTO nynames (KEY UUID(), VALUE kname)

259

SELECT {":sid":d[0],
 ":id":d[1],
 ":position":d[2],
 ":created_at":d[3],
 ":created_meta":d[4],
 ":updated_at":d[5],
 ":updated_meta":d[6],
 ":meta":d[7],"brth_yr":d[8],
 "brth_yr":d[9],
 "ethcty":d[10],
 "nm":d[11],
 "cnt":d[12],
 "rnk":d[13]} kname
FROM (SELECT d FROM datagov UNNEST data d) as u1;
{
 "results": [],
 "metrics": {
 "elapsedTime": "3.578776104s",
 "executionTime": "3.578736949s",
 "resultCount": 0,
 "resultSize": 0,
 "mutationCount": 13962
 }
}

Better method: I’ve saved the best for last.The query in step (8) works fine. However, this is the

old way. This requires you two-hand code the field names. There has to be a better, generalized

way. With N1Ql, there is a better way.

INSERT INTO nynames
 (
 KEY UUID(),
 value o
)
SELECT o
FROM (
 SELECT meta.'view'.columns[*].fieldName f,
 data
 FROM datagov) d
 UNNEST data d1
LET o = OBJECT p:d1[ARRAY_POSITION(d.f, p)] FOR p IN d.f END ;
{

260

 "results": [],
 "metrics": {
 "elapsedTime": "3.765045363s",
 "executionTime": "3.765005394s",
 "resultCount": 0,
 "resultSize": 0,
 "mutationCount": 13962
 }
}

Let’s first understand this query before we can appreciate it.

The INSERT INTO clause simply generates UUID() and the document o projected from the

SELECT into the bucket nynames.

In the SELECT, there is a subquery that’s projecting the column list we saw before and the

entire dataset. In the main SELECT, the data is unnested to flatten it. Now you have three

objects to handle.

	 d.f: List of field names.

	 d.data: Full data of baby names, arrays of arrays.

	 d1: An array for each baby name and its statistics.

Let’s look at the expression:

LET o = OBJECT p:d1[ARRAY_POSITION(d.f, p)] FOR p IN d.f END ;

This creates a JSON document by creating name:value pairs by having the variable p iterate

through the names in d.f (names) and the expression d1[array_position(d.f, p)] selecting the

corresponding data from the flattened array d.

Many thanks to Sitaram Vemulapalli for writing this beautiful query.

https://dzone.com/users/2842269/sitaramv.html

261

2. Querying the New York Names Dataset

As you can see, this JSON structure isn’t conducive for reporting or query processing. So, let’s

flatten this. N1QL makes it very easy to transform this array of scalars to easily manipulate JSON

data. See the section at the latter half of the article to see how to transform this data into a

flattened JSON like below.

Once you do the transformation, you have all the name data in a bucket called nynames.

Now, let’s ask some common questions and see what we understand!

Q1: Let’s get some sample data. Since we have used UUID() as primary keys and this query uses

the primary key, the data you get here are random.

SELECT *
FROM nynames
LIMIT 2;
[
 {
 "nynames": {
 ":created_at": 1465395604,
 ":created_meta": "399231",

262

 ":id": "D3F1A794-A634-4DA4-AA66-96987BB21E92",
 ":meta": null,
 ":position": 13240,
 ":sid": 13240,
 ":updated_at": 1465395604,
 ":updated_meta": "399231",
 "brth_yr": "2014",
 "cnt": "27",
 "ethcty": "BLACK NON HISPANIC",
 "gndr": "MALE",
 "nm": "Joseph",
 "rnk": "45"
 }
 },
 {
 "nynames": {
 ":created_at": 1386853125,
 ":created_meta": "399231",
 ":id": "9AC42CB0-2A84-4497-A907-DF7BF645C953",
 ":meta": "{\n}",
 ":position": 374,
 ":sid": 374,
 ":updated_at": 1386853125,
 ":updated_meta": "399231",
 "brth_yr": "2011",
 "cnt": "22",
 "ethcty": "WHITE NON HISPANIC",
 "gndr": "FEMALE",
 "nm": "JENNA",
 "rnk": "69"
 }
 }

]

Q2. What’s the total count of names and babies in the New York dataset?

This data covers the 2,811 most popular names. Let’s see which name is the most popular

and which name is the least popular, at least in this dataset.

SELECT COUNT(DISTINCT nm) as namecount,
 SUM(TONUMBER(cnt)) as babycount
FROM nynames;
[

263

 {
 "babycount": 482131,
 "namecount": 2811
 }
]
SELECT name, SUM(TONUMBER(cnt)) as nc
FROM nynames
GROUP BY name
ORDER BY SUM(TONUMBER(cnt)) DESC
LIMIT 1;
[
 {
 "nc": 10,
 "nm": "Kameron"
 }
]

Let’s find the top 10 popular names in New York.

SELECT nm as name, SUM(TONUMBER(cnt)) as namecount
FROM nynames
GROUP BY nm
ORDER BY SUM(TONUMBER(cnt)) DESC
LIMIT 10;
[
 {
 "name": "JAYDEN",
 "namecount": 4040
 },
 {
 "name": "JACOB",
 "namecount": 3437
 },
 {
 "name": "ETHAN",
 "namecount": 3403
 },
 {
 "name": "DANIEL",
 "namecount": 3009
 },
 {

264

 "name": "MATTHEW",
 "namecount": 2984
 },
 {
 "name": "MICHAEL",
 "namecount": 2972
 },
 {
 "name": "ISABELLA",
 "namecount": 2929
 },
 {
 "name": "SOPHIA",
 "namecount": 2809
 },
 {
 "name": "DAVID",
 "namecount": 2764
 },
 {
 "name": "AIDEN",
 "namecount": 2698
 }
]

So, they repeat boys names much more often than girls names!

Q4. What’s the total count of babies by gender?

SELECT gndr as gender, SUM(TONUMBER(cnt)) as babycount
FROM nynames
GROUP BY gndr;
[
 {
 "babycount": 272048,
 "gender": "MALE"
 },
 {
 "babycount": 210083,
 "gender": "FEMALE"
 }
]

265

Q5. What are the top three groups in terms of number of children?

SELECT ethcty AS Ethnicity,
 brth_yr AS BirthYear,
 SUM(tonumber(cnt)) AS NameCount
FROM nynames
GROUP BY ethcty, brth_yr
ORDER BY SUM(TONUMBER(cnt)) DESC
LIMIT 3;
[
 {
 "BirthYear": "2011",
 "Ethnicity": "WHITE NON HISPANIC",
 "NameCount": 99512
 },
 {
 "BirthYear": "2011",
 "Ethnicity": "HISPANIC",
 "NameCount": 97768
 },
 {
 "BirthYear": "2011",
 "Ethnicity": "BLACK NON HISPANIC",
 "NameCount": 42164
 }
]

Q6. Now, let’s see most popular starting letter.

SELECT SUBSTR(LOWER('nm'), 0, 1) alphabet,
 SUM(TONUMBER(cnt)) ncount
FROM nynames
GROUP BY substr(lower('nm'), 0, 1)
ORDER BY sum(tonumber(cnt)) DESC
LIMIT 10;
[
 {
 "alphabet": "a",
 "ncount": 73562
 },

266

 {
 "alphabet": "j",
 "ncount": 61599
 },
 {
 "alphabet": "m",
 "ncount": 48090
 },
 {
 "alphabet": "s",
 "ncount": 36204
 },
 {
 "alphabet": "e",
 "ncount": 35552
 },
 {
 "alphabet": "c",
 "ncount": 27191
 },
 {
 "alphabet": "l",
 "ncount": 26865
 },
 {
 "alphabet": "d",
 "ncount": 21026
 },
 {
 "alphabet": "n",
 "ncount": 17195
 },
 {
 "alphabet": "k",
 "ncount": 16632
 }
]

267

Conclusion

Data.gov has tons of data. This data unlocks how the US government has worked in the past

eight years. You can question the data to understand what worked and what didn’t.

N1QL provides the key link between just raw data to queryable form. In the transformation

query, data specific field names are never used. That means that this query can be used for all

of the JSON data sets in this format at data.gov. This is the power of N1QL, SQL for JSON:

expressive, powerful, and completed language for querying, transforming, and manipulating

JSON data.

Go ahead. Try this on a data set you love on data.gov.

Related Information:

1.	Couchbase: http://www.couchbase.com

2.	N1QL: http://query.couchbase.com

3.	Data.gov: http://www.data.gov

4.	JSON datasets in Data.gov: JSON Data Sets.

https://developer.couchbase.com/documentation/server/4.6/getting-started/try-a-query.html
https://www.data.gov
https://www.data.gov
http://www.couchbase.com
http://query.couchbase.com
http://www.data.gov
https://catalog.data.gov/dataset?res_format=JSON&q=JSON&sort=score+desc%2C+name+asc

268

269

HOW TO SPEED UP SPATIAL SEARCH IN
COUCHBASE N1QL
Author: Keshav Murthy

Location-based services like Yelp, Uber, and Foursquare are ubiquitous. This article shows an

easy way to use Couchbase N1QL to issue spatial queries and use GSI index to speed up those

queries to meet your SLAs.

Whether you just finished a long SF Giants extra innings win or spent the afternoon running up

and down the Lombard Street in San Francisco, sometimes, you just want a cold one, really fast.

When you search on your app, you expect the answer quickly, with ratings, distance, and all.

Thanks to GPS, triangulation, and IP-based location detection, apps can determine your

current location.

Google does this. Yelp does this. Uber does this. How can you use your spatial data to provide

location-based services or information?

https://www.yelp.com/
http://www.uber.com/
http://www.foresquare.com/
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Mobile_phone_tracking
https://www.iplocation.net/
http://www.latlong.net/

270

Here is an example of spatial data for two breweries from the beer-sample data set shipped

with Couchbase.

 {
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7825,
 "lon": -122.393
 },
 "name": "21st Amendment Brewery Cafe"
 },
 {
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 50.7668,
 "lon": 4.3081
 },
 "name": "3 Fonteinen Brouwerij Ambachtelijke Geuzestekerij"
 }

Each numerical pair, geo.lat and geo.lon represent latitude and longitude on earth. You’re in

Union Square, San Francisco with latlong (37.21, -123.38). And you have a database with

breweries and their locations.

271

These are the typical questions to answer for your application.

1. Search breweries within 10 kilometers of my location.

2. Give the distances to each of these breweries.

3. Give me a sorted list of these breweries.

The application may have additional concerns about relevance, sorting by distance, rating, etc.

Let’s focus on finding answers to the three questions above and doing so efficiently.

1. Search Breweries Within 10 Kilometers of My Location

First, let’s look at the sample data shipped with Couchbase.

SELECT * FROM 'beer-sample' WHERE type = 'brewery' LIMIT 1;
[
 {
 "beer-sample": {
 "address": [
 "563 Second Street"
],
 "city": "San Francisco",
 "code": "94107",
 "country": "United States",
 "description": "The 21st Amendment Brewery offers a variety of award winning 	
house made brews and American grilled cuisine in a comfortable loft like
setting. Join us before and after Giants baseball games in our outdoor beer
garden. A great location for functions and parties in our semi-private Brewers
Loft. See you soon at the 21A!",
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7825,
 "lon": -122.393
 },
 "name": "21st Amendment Brewery Cafe",
 "phone": "1-415-369-0900",
 "state": "California",
 "type": "brewery",
 "updated": "2010-10-24 13:54:07",
 "website": "http://www.21st-amendment.com/"
 }
 }
]

272

This is a small dataset to show full examples. The same approach described in this article will

work on larger data sets as well. Bigger data sets will have bigger performance benefits!

SELECT COUNT(*) FROM 'beer-sample' WHERE type = 'brewery' ;
[
 {
 "$1": 1412
 }
]

This dataset contains a geolocation for most of the breweries. We’ll be using that to find the

nearest breweries.

2. Give the Distances to Each of These Breweries

Let’s use Union Square, San Francisco with latlong (37.21, -123.38).

That’s easy. simply execute this query. You’ll have the results. Observe the address, city, and

geo-information in the result. All are within San Francisco, with latitude and longitude pretty

close to our starting point.

SELECT country, state, city, name, geo, address
FROM 'beer-sample'
WHERE (RADIANS(geo.lat) >= 0.658234696881 AND RADIANS(geo.lat) <= 0.660743280942)
AND (RADIANS(geo.lon) >= -2.13805724718 AND RADIANS(geo.lon) <= -2.13488305105)
AND acos(sin(RADIANS(37.7859357)) * sin (RADIANS(geo.lat)) + cos(RADI-
ANS(37.7859357)) * cos(RADIANS(geo.lat)) * cos (RADIANS(geo.lon) - RADIANS(
-122.4107226))) <= 0.00125568984461
[
 {
 "address": [
 "1195-A Evans Avenue"
],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 37.7387,
 "lon": -122.381
 },
 "name": "Speakeasy Ales and Lagers",
 "state": "California"
 },

273

 {
 "address": [
 "3435 Cesar Chavez #227"
],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 37.7481,
 "lon": -122.419
 },
 "name": "Shmaltz Enterprises",
 "state": "California"
 },
 {
 "address": [
 "1705 Mariposa Street"
],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7635,
 "lon": -122.401
 },
 "name": "Anchor Brewing",
 "state": "California"
 },
 {
 "address": [
 "1398 Haight Street"
],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 37.7702,
 "lon": -122.445
 },
 "name": "Magnolia Pub and Brewery",
 "state": "California"
 },

274

 {
 "address": [],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "APPROXIMATE",
 "lat": 37.7749,
 "lon": -122.419
 },
 "name": "Golden Gate Park Brewery",
 "state": "California"
 },
 {
 "address": [],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "APPROXIMATE",
 "lat": 37.7749,
 "lon": -122.419
 },
 "name": "Shmaltz Brewing Company",
 "state": "California"
 },
 {
 "address": [
 "650 Fifth Street #403"
],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7756,
 "lon": -122.398
 },
 "name": "Big Bang Brewery (Closed)",
 "state": "California"
 },
 {
 "address": [
 "563 Second Street"
],

275

 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7825,
 "lon": -122.393
 },
 "name": "21st Amendment Brewery Cafe",
 "state": "California"
 },
 {
 "address": [
 "661 Howard Street"
],
 "city": "San Francisco",
 "country": "United States",
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7855,
 "lon": -122.4
 },
 "name": "ThirstyBear Brewing",
 "state": "California"
 }
]

Now, you ask, how did I come up with this gobbledygook query? What query should I run if

the location is different? Those are fair questions. Let’s take a detour here.

The approach and the math are described by Jan Philip Matuschek in this paper. There are

several implementations of this approach to finding the bounding box for a given latlong.

I used the Python implementation by Jeremy Fein to find the bounding box.

Once you have the bounding box, the paper shows you how to write the SQL query and deal

with the 180th meridian problem, as well. The next step is to simply write the query in N1QL

and execute it!

http://janmatuschek.de/Contact
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
https://github.com/jfein/PyGeoTools/blob/master/geolocation.py
https://github.com/jfein

276

Here’s the full implementation of this in Python. This example python program shows you how

to retrieve the results from the N1QL query.

Given the location and area of interest:

•	 The location and distance give you the circle of interest.

•	 Given the same info, calculate the bounding box and determine its corner geolocation.

•	 Determine if this bounding box crosses 180th meridian or not.

•	 The N1QL query formed has two sets of predicates.

•	 Determine all the points within the bounding box.

•	 From the qualified items in the step above,

filter the points falling outside the circle.

•	 You have the result now!

Let’s look at the main portion of this.

 # Parameters
 # loc = GeoLocation.from_degrees(37.21, -123.38) # Union Square, San Francisco
 # distance = 10 # kilometer
 # Get the latitude, longitude and distance
 lat = float(sys.argv[1])

https://github.com/keshavmr/pyspatial/blob/master/geoquery.py
https://github.com/keshavmr/pyspatial/blob/master/geoget.py

277

 lon = float(sys.argv[2])
 distance = float(sys.argv[3])
 # Calculate the radians.
 loc = GeoLocation.from_degrees(lat, lon)
 # Calculate the bounding box for the location and given distance
 SW_loc, NE_loc = loc.bounding_locations(distance)
 # Are we crossing the 180th meridian or not
 meridian180condition = (" OR " if (SW_loc.rad_lon > NE_loc.rad_lon) else " AND
")
 # Generate the query
 query = "SELECT country, state, city, name, geo FROM 'beer-sample' WHERE " + \
 "(RADIANS(geo.lat) >= " + str(SW_loc.rad_lat) + " and RADIANS(geo.lat) <= " +
str(NE_loc.rad_lat) + ") and " \
 "(RADIANS(geo.lon) >= " + str(SW_loc.rad_lon) + meridian180condition + " RA-
DIANS(geo.lon) <= " + str(NE_loc.rad_lon) + ")" \
 + " AND " \
 " acos(sin(RADIANS(" + str(loc.deg_lat) + ")) * sin (RADIANS(geo.lat)) + cos(
RADIANS(" + str(loc.deg_lat) + ")) " \
 + " * cos(RADIANS(geo.lat)) * cos (RADIANS(geo.lon) - RADIANS(" + str(loc.
deg_lon) + "))) <= " + str(distance/6371.0)
 print query

Yes, it’s that simple.

•	 Given the location, lat, long, and distance, calculate the bounding box.

•	 Execute the SQL with the expression to get the results.

Now, this query executes in about 356 milliseconds. You say, "That’s too much for my customer

wanting to get a cold one really quickly!" I agree. Let’s look at the query plan.

 "~children": [
 {
 "#operator": "PrimaryScan",
 "index": "beer_primary",
 "keyspace": "beer-sample",
 "namespace": "default",
 "using": "gsi"
 },

PrimaryScan is never a good approach to get the best performance. As that data grows, the

time taken will grow more than linearly, consuming additional network, CPU, memory resources,

etc. It’ll increase the latency and reduce throughput.

278

Let’s look at the query we used again.

SELECT country, state, city, name, geo, address
FROM 'beer-sample'
WHERE (RADIANS(geo.lat) >= 0.658234696881
 AND RADIANS(geo.lat) <= 0.660743280942)
AND (RADIANS(geo.lon) >= -2.13805724718
 AND RADIANS(geo.lon) <= -2.13488305105)
AND acos(sin(RADIANS(37.7859357)) * sin (RADIANS(geo.lat)) +
 cos(RADIANS(37.7859357)) * cos(RADIANS(geo.lat)) *
 cos (RADIANS(geo.lon) - RADIANS(-122.4107226)))
 <= 0.00125568984461

In this query, the first two expressions simply operate on geo.lat, geo.lon with the RADIANS()

function on the values. We can create a GSI Index on it.

CREATE INDEX idx_brewery_geo_latlon ON
 'beer-sample'(RADIANS(geo.lat), RADIANS(geo.lon));

Now, let’s execute the same query again to see the performance.

{
 "requestID": "8d85b9e0-1c65-4e88-835d-2e1d5a7a52b7",
 "signature": {
 "address": "json",
 "city": "json",
 "country": "json",
 "geo": "json",
 "name": "json",
 "state": "json"
 },
 "results": [
 {
 "address": [
 "1195-A Evans Avenue"
],
 "city": "San Francisco",
 "geo": {
 "accuracy": "RANGE_INTERPOLATED",
 "lat": 37.7387,
 "lon": -122.381
 },
 "name": "Speakeasy Ales and Lagers"

279

 },
….
 "status": "success",
 "metrics": {
 "elapsedTime": "8.341ms",
 "executionTime": "8.311ms",
 "resultCount": 9,
 "resultSize": 3405
 }
}

Wow, that’s 41 times improvement for this meager data set! Imagine the improvements you’ll

see for an even larger data set. It’s like reducing a six-hour flight to eight minutes!

Again, referring back to the paper on geo locations, we know the way to calculate the distance

between two geo locations:

dist = arccos(sin(lat1) · sin(lat2) + cos(lat1) · cos(lat2) · cos(lon1 - lon2)) ·
R
R is the radius of the earth.

We simply do that calculation in the SELECT statement to calculate the distance and then

orbit the distance (expression is aliased to distance in the SELECT clause).

SELECT name, geo, address, (acos(sin(RADIANS(37.7859357)) * sin (RADIANS(geo.
lat)) +
 cos(RADIANS(37.7859357)) * cos(RADIANS(geo.lat)) *
 cos (RADIANS(geo.lon) - RADIANS(-122.4107226))) * 6371) distance
FROM 'beer-sample'
WHERE (RADIANS(geo.lat) >= 0.658234696881
 AND RADIANS(geo.lat) <= 0.660743280942)
AND (RADIANS(geo.lon) >= -2.13805724718
 AND RADIANS(geo.lon) <= -2.13488305105)
AND acos(sin(RADIANS(37.7859357)) * sin (RADIANS(geo.lat)) +
 cos(RADIANS(37.7859357)) * cos(RADIANS(geo.lat)) *
 cos (RADIANS(geo.lon) - RADIANS(-122.4107226)))
 <= 0.00125568984461
ORDER BY distance asc
LIMIT 5;
[
 {
 "address": [
 "661 Howard Street"

http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

280

],
 "distance": 0.9435275834385553,
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7855,
 "lon": -122.4
 },
 "name": "ThirstyBear Brewing"
 },
 {
 "address": [],
 "distance": 1.426534124430217,
 "geo": {
 "accuracy": "APPROXIMATE",
 "lat": 37.7749,
 "lon": -122.419
 },
 "name": "Shmaltz Brewing Company"
 },
 {
 "address": [],
 "distance": 1.426534124430217,
 "geo": {
 "accuracy": "APPROXIMATE",
 "lat": 37.7749,
 "lon": -122.419
 },
 "name": "Golden Gate Park Brewery"
 },
 {
 "address": [
 "650 Fifth Street #403"
],
 "distance": 1.6034394307234021,
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7756,
 "lon": -122.398
 },
 "name": "Big Bang Brewery (Closed)"
 },

281

 {
 "address": [
 "563 Second Street"
],
 "distance": 1.6036323776739865,
 "geo": {
 "accuracy": "ROOFTOP",
 "lat": 37.7825,
 "lon": -122.393
 },
 "name": "21st Amendment Brewery Cafe"
 }
]

3. Give Me a Sorted List of These Breweries

The previous query will give you the qualifying nearest breweries. Now, you want additional

filters like ratings, cost, etc. The additional requirements are bread and butter requirements for

B-Tree indexes. Simply add new fields to your index.

CREATE INDEX idx_beer_sample_loc_rating_cost on 'beer-sample'
 (RADIANS(geo.lat), RADIANS(geo.lon), ratings, cost)
 WHERE type = 'brewery';

Now, let’s look for the nearest breweries with a 4-star rating and a cost level of "medium."

SELECT country, state, city, name, geo, address ,
 (acos(sin(RADIANS(37.7859357)) * sin (RADIANS(geo.lat)) +
 cos(RADIANS(37.7859357)) * cos(RADIANS(geo.lat)) *
 cos (RADIANS(geo.lon) - RADIANS(-122.4107226))) * 6371) AS distance
FROM 'beer-sample'
WHERE (RADIANS(geo.lat) >= 0.658234696881
 AND RADIANS(geo.lat) <= 0.660743280942)
AND (RADIANS(geo.lon) >= -2.13805724718
 AND RADIANS(geo.lon) <= -2.13488305105)
AND acos(sin(RADIANS(37.7859357)) * sin (RADIANS(geo.lat)) +
 cos(RADIANS(37.7859357)) * cos(RADIANS(geo.lat)) *
 cos (RADIANS(geo.lon) - RADIANS(-122.4107226)))
 <= 0.00125568984461
AND ratings = 4
AND cost = 'medium'
AND type = 'brewery'
ORDER BY distance ASC;

282

See the explanation below. See the span information. The index is the filtering location, rating,

and cost in one big swoop! The more filtering the index does, the faster you get your results.

That improves both latency, throughput, and utilization. Finally, the query simply retrieves the

qualified breweries, calculates the specific distance, and sorts them. Use this technique if you

need to incorporate spatial search on your app.

Maybe your boss will buy you a cold one for it!

 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "idx_beer_sample_loc_rating_cost",
 "index_id": "bf5bed9f5b237493",
 "keyspace": "beer-sample",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "High": [
 "0.660743280942",
 "(-2.13488305105)",
 "4",
 "\"medium\""
],
 "Inclusion": 3,
 "Low": [
 "0.658234696881",
 "(-2.13805724718)",
 "4",
 "\"medium\""
]
 }
 }
],
 "using": "gsi"
 },

283

References

•	 Couchbase

•	 N1QL

•	 Finding Points Within a Distance of a Latitude/Longitude Using Bounding Coordinates

http://www.couchbase.com/
http://query.couchbase.com/
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

284

Monitoring
and Tooling

286

287287

MASTERING THE COUCHBASE N1QL SHELL:
CONNECTION MANAGEMENT AND SECURITY

Author: Isha Kandaswamy

This three-part series discusses the new and improved cbq shell. Cbq is the command line shell

that helps you write and run N1QL queries and scripts interactively. The N1QL query engine

parses, interprets, plans and executes each N1QL statement and returns the results in JSON. This

response is available to the shell, which then displays the result. All shell commands start with

a backslash, " \ ". All other commands are treated as N1QL statements. It is important to note

that all cbq commands are case insensitive. Command line options, on the other hand, are case

sensitive.

The command line options and shell commands that help with scripting can be classified into

multiple categories. In this first article of three, we shall talk about Connection Management

and Security. The examples provided are specific to Couchbase Server 4.5. Future versions will

introduce additional options, commands, and features.

Connection Management

Couchbase can be deployed in multiple configurations. You can have a single node with all the

services enabled on that node, or have a multi-node cluster with each node running different

services, such as data, query, and/or index. The N1QL shell, cbq, allows you to connect to either

a cluster endpoint or a single query service instance running on a specific node. This can be

achieved in three ways.

•	 Command line option -e / --engine

•	 Command line argument, ./cbq <url>(as the last argument to the shell. Details below)

•	 Shell command \CONNECT when within a shell session (Details below)

Couchbase Server uses specific network ports for communication. Port 8091, the Administration

Port, and 8093, the query service port, are defaults. In order to connect to the cluster, the url

will contain port 8091. To connect to a specific query service in order to run a query on that

node, the url will contain port 8093.

288

Suppose you have a multi-node cluster with a mix of services among the nodes-data services,

query services, and index services. The cbq shell can connect to any node in the cluster and

automatically discover the query services across the cluster. As a user, you do not need to

know or care about which nodes are running query services. If you connect to the cluster

(details below), the cbq shell will round robin your queries among all the query services in

the cluster. This allows you to load balance work among query nodes.

In the diagram above, we have a three node cluster. Node 1 (172.23.100.191) is configured as a

data node, Node 2 (172.23.100.192) with all three services (Data, Index and Query) and Node 3

(172.23.100.193) with just Index and Query.

When we use the shell to connect to this cluster, we pass in the URL to a cluster endpoint,

namely http://172.23.100.191:8091 as follows:

 ./cbq http://172.23.100.191:8091

The shell will automatically connect and discover that Node 2 and Node 3 are running query

services, and then round robin the queries across these nodes. This saves us the trouble of

having to identify query services within a large cluster.

Remember that we can use any node in the cluster:

./cbq http://172.23.100.192:8091

./cbq http://172.23.100.193:8091

Another advantage of the shell being cluster-aware is that when nodes are added or removed,

the shell will continue to auto detect query nodes, and queries will automatically be redirected

to the current query nodes in the cluster.

Suppose we have a single node Couchbase deployment that is provisioned with all three

services - data, query, and index. This can be seen in the diagram below.

289

When bringing up cbq, if we don't pass in an argument or a -e option, then we are automatically

connected to the default cluster IP, namely localhost and port 8091 or "http://localhost:8091".

These are all equivalent:

•	 ./cbq

•	 ./cbq -e=http://localhost:8091

•	 ./cbq http://localhost:8091

•	 cbq > \CONNECT http://localhost:8091;

This being a single node deployment of Couchbase, the shell detects the local query service

and queries against that. In the message below, the absence of credentials is not an error, since

this server does not have any password-protected buckets. (Accessing such buckets will be

discussed in the next section.)

We can also explicitly connect to a specific query node. In the image below, we see a four node

cluster.

http://localhost:8091
http://localhost:8091
http://localhost:8091
http://localhost:8091;

290

Say we want to connect to the query node on 172.23.100.192, then we can issue the shell

command.

./cbq -e=http://172.23.100.192:8093

OR

cbq > \CONNECT http://172.23.100.192:8093;

This will now allow us to run all statements against the query service on Node 172.23.100.192.

The URL that we connect to is made up of two components, the prefix and a port number.

The prefix can be any valid IP or hostname. The full URL consists of a scheme followed by

host and a port.

For the \CONNECT command, if the user is already connected, they are disconnected and

connected to the new endpoint. We can close an existing connection without exiting the shell

using the \DISCONNECT command. This also allows us to switch between different connections

in a given session. If the shell is not connected to any endpoint, then \DISCONNECT throws an

error that the shell is not connected.

One option when trying to run the same set of queries between multiple Couchbase clusters

(made easy by the history and scripting features of the shell, which will be discussed in a later

article in this series), is to bring up the shell without any connection, using the -ne or -no-engine

option. Then we can use the \CONNECT command to switch between the different clusters.

Security

Couchbase Server provides security features that allow administrators to ensure secure

deployment.

You can use these features with cbq shell in order to interact with Couchbase securely.

cbq provides a set of command line options in order to connect securely to any Couchbase

cluster. (Refer to the table below to see all the available options.)

When using SSL secure transport (https:// URL) to connect from the shell, we need to take into

account the two kinds of certificates that Couchbase supports – self-signed certificates and CA

(Certificate Authority) signed certificates. Once we connect using SSL, we have two courses

of action. Either we can skip verifying the certificates returned from the cluster or accept a

certificate and verify it. In order to skip verification of the certificates, we use the --no-ssl-verify

option. cbq will issue a warning " Disabling SSL verification means that cbq will be vulnerable to

man-in-the-middle attacks."

./cbq --no-ssl-verify https://172.23.107.159:18091

When using SSL-encrypted connections using a self-signed certificate, we need to specify this

flag. If not, cbq will throw an error, since it assumes that the certificate is signed by an unknown

authority (X509: certificate signed by unknown authority).

172.23.100.192
https://developer.couchbase.com/documentation/server/current/security/security-watsnew.html

291

An option to pass in certificates, –cacert, will be added to the shell in the future. This will allow

the user to specify a CA certificate that will then be used to verify the identity of the server.

In general, even for unencrypted connections, there are two types of credentials defined

by the N1QL REST API, bucket credentials and role-based access credentials (for example

Administrator). Each of these are passed in differently. In order to pass in role-based credentials

we use the -u or --user option along with the -p or --password option. If the password option is

not specified on startup, then the user is prompted for the password.

In order to pass in bucket credentials, we can use the --credentials option.

We can also set the creds parameter within a session.

292

Secure Connections to Protected Clusters With Mixed Configurations

Couchbase data is stored in buckets. A bucket can optionally be protected with a bucket-

specific password. The Couchbase cluster could contain only password-protected buckets, a

mix of protected and unprotected buckets, or only unprotected buckets. In the cases where

we have protected buckets in our Couchbase cluster, we need to pass in role based access

credentials and / or bucket-specific credentials. Here is an example of role-based credentials.

If the cluster deployed has a mix of protected and unprotected buckets, then we can pass in

each buckets credentials individually as well. This can be done using the -c or --credentials

option. When passing in these credentials, the format is a comma separated set of

username:password. It is important to remember that any credentials passed in are valid only

for that session. In Couchbase, the username of each bucket is the bucket name itself.

 ./cbq -c=beer-sample:pass1,travel-sample:pass2

293

This is very helpful when performing joins or writing subqueries, when the buckets accessed are

password protected.

Suppose the user changes the password of a bucket, and wants to update the credentials that

he/she has passed to the shell. This can easily be accomplished by using the N1QL REST API

parameter creds. This value can be set using the \SET command.

cbq> \SET -creds beer-sample:pass1,travel-sample:newpass ;

But it is important to remember that the user needs to pass in the other credentials as well.

Even if they haven't changed. This is because the value of the credentials is passed in for every

query that is executed. Once we do this, we can now access the secure buckets as well.

In order to see what values have been set for the creds REST API parameter, we can use either

the \ECHO command or the \SET command without any input arguments. However the value of

the password is not displayed.

Using the \ECHO Command

cbq> \ECHO -creds;
beer-sample:*,travel-sample:*

Using the \SET Command

This will display all the different parameter settings within the shell session.

cbq> \SET;
Query Parameters :
Parameter name : creds
Value : ["beer-sample:*, travel-sample:*"]
…

294

Summary

Cbq is a powerful tool. It can manage connections to both a query service and full cluster, and

can auto discover the query services in a Couchbase cluster. Queries are executed in a round-

robin fashion against all the available query services. The shell also provides secure transport

and authentication, so that users can securely access any data to which they are entitled.

Connection Management

Command Line Options

Shell Commands

Security

Command Line Options

295

MASTERING THE COUCHBASE N1QL SHELL:
INTERACTING WITH THE N1QL REST API AND
EXECUTING PREPARED STATEMENTS.

Author: Isha Kandaswamy

Part 2 of the 3 part series discussing the new and improved shell.

With the previous article, we saw how to connect to a couchbase cluster/query end point

and also how to manage secure connections. With this article let us dive a little deeper into

interacting with N1QL.

Interacting with the N1QL Rest API using cbq

N1QL provides a REST API that allows clients to execute N1QL statements. This is done by

setting various request parameters, named and positional parameters. In order to interact with

the Query Rest API/Named and Positional parameters and allow for better scripting, cbq allows

3 kinds of parameters, with each type differentiated by a prefix.

Query parameters represent the request and positional parameters as defined by the query REST

API. In order to manipulate the value of any of the given query parameters, prefix it with a ‘-’.

Session parameters can be of 2 types. (a). Predefined parameters do not contain a prefix and

(b). user-defined parameters that are temporary variables defined on a per session basis.

"histfile","batch" and "quiet" are the predefined parameters. "Histfile" represents the name of

the file where history of the shell is stored. By default, this file is named .cbq_history and is

found under ‘~/’.

The "batch" parameter takes 2 values, "on" and "off". When set to "on", we treat the session as

a batch mode session. This means all of the queries are stored and sent to the server in batch

when the user issues a ‘\’. This resets the buffer. Setting the batch parameter to off makes cbq

switch back to single query mode. The "quiet" parameter takes boolean values and allows the

296

user to decide if they want to display the error/warning/help messages within the shell session.

By default it is set to false.

The third kind of parameters are named parameters. These are prefixed by a ‘-$’ and represent

named variables as referred to within any N1QL query. These will be discussed in greater detail

in the following section.

All of the above parameters can be assigned different values using the set command. Use the

SET or PUSH command to assign a value to it, and the UNSET or POP command to reset the

value. We shall discuss these commands in more detail in the following sections.

A table specifying the current list of request parameters as supported by the REST API is given

in the N1QL REST API documentation.

Parameter configuration - How to set parameter values

Now that we know what the different kinds of parameters are, let’s look at how to set them.

Internally every parameter is defined as a stack. And each parameter has a separate stack

associated with. It can contain multiple values.

The user can either push a new value onto the stack using the \PUSH command, or set the

named stack with a value using the \SET command. The difference between \SET and \PUSH

is that \SET always modifies the top of a variable’s stack rather than resetting the whole

parameter stack or pushing onto the stack, and \PUSH adds to the stack.

\SET <prefix><name> <value>;
\PUSH <prefix><name> <value>;

Where name is the name of the parameter, value is the value to be set and prefix is one of the

following depending on the parameter type.

Both \SET and \PUSH can also be issued without any arguments. If \PUSH has no arguments

then it copies the top element of every variable’s stack, and then pushes that copy to the top of

its respective stack. So each stack grows by 1, but the values are preserved. The user can then

use \SET to set the top value. This ensures that the stack does not grow indefinitely and the

values on the stack are preserved. \SET with no input arguments displays all the parameters

defined and their values for the shell current session.

In order to delete the values from the parameter stacks, we can either use the \UNSET or \POP

commands. The difference between \POP and \UNSET is that the former pops the top of the

stack for the corresponding parameter and the latter pops all the values and then deletes the

parameter.

\POP <prefix><name>;
\UNSET <prefix><name>;

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-rest-api/index.html

297

If the \POP command has no arguments, then every variable’s stack is popped once. This allows

the following pattern:

\PUSH
\SET …
\SET …
<n1ql commands> ...
\POP

Now, all previous settings are restored. All the settings were applied to the N1QL statements

between \PUSH and \POP. Empty variable stacks are the same as the variable not being

defined, so these can be removed after a \POP or \UNSET.

Running Prepared Statements with Named and Positional query parameters

In order to execute prepared statements we first need to prepare the statement. This is done

using the N1QL PREPARE command. The command executes and displays the encoded_plan,

name, operator which is the plan (explain), signature and text (statement issued). This can be

used to create either a Prepared statement or a Named Prepared Statement.

Prepared Statement

Created using the N1QL Prepare command as follows :

PREPARE <query>;

If the name is not specified in the N1QL prepare statement, a unique one is assigned. This can

then be used when executing the \PREPARED shell command.

Named Prepared Statement

Created using the N1QL Prepare command by specifying a <name> as follows :

PREPARE <name> FROM <query>;

The name is explicitly specified in the N1QL prepare statement and the name can be used to run

the prepared statement.

298

Running a prepared statement

In order to define and execute prepared statements the following steps need to be followed.

1.	 Set the named and positional parameters that are present in the prepare statement.

2.	 PREPARE <n1ql query>; (Prepared statement or a Named Prepared Statement.) (see

below)

3.	 EXECUTE <name>;

Named and Positional Parameters

When creating prepared statements we can refer to the parameters within the query either by

name or by position. These are named and positional parameters respectively.

In order to define named or positional parameters we use the \SET or \PUSH shell commands as

defined in the documentation for cbq.

For each named parameter, we prefix the variable name with ‘-$’. This is done as follows :

\PUSH -$r 9.5;

\SET -$date "1-1-2014";

In the above examples we create a named parameter r and date with values 9.5 and "1-1-2014".

The -args query parameter used to set positional parameters. The value for this parameter is an

input array containing the different values that correspond to positions within the query.

\SET -args [<comma separated values>] ;

For example :

\SET -args [9.5, "1-1-2014"];

These will represent $1 and $2 within the query.

This can be better understood with the example below.

Executing Prepared Statements

Let us assume that we want to prepare a query that retrieves flight information for flights going

from a source airport to a destination airport on a particular day.

 cbq > PREPARE airinfo
 > FROM SELECT a.name, s.flight, s.utc, r.sourceairport, r.destinationairport,
r.equipment
 > FROM 'travel-sample' r
 > UNNEST r.schedule s

299

 > JOIN 'travel-sample' a ON KEYS r.airlineid
 > WHERE r.sourceairport=$airport AND
 > r.destinationairport=$1 AND
 > s.day=$2
 > ORDER BY a.name;

This gives the following results

{
 "requestID": "7ba73e2b-e465-488f-91bf-23fe2926ec32",
 "signature": "json",
 "results": [
 {
 "encoded_plan":
"H4sIAAAAAAAA/7RVb286Nwz+KpHXFyBlaDBNlW7iRbeC1q6DClpN1YS4LGeOtCG5OrkOVt0++x-
TuD3+ltfvp9w7bj+3nsX3hHdBIm2Ayz7QwEAFwMGKFEIFQpMzCAgebIQlvCaJ3+GZnwBRfczQSgcM/
cql0Qmgg+uMQdJX7pSX1d0BlpN6UxhRdKHWnnN/CHwSl6CGCBBci1z7yJN5Qf+vEKtMh757UG0T-
dgn8Ye1nMiprV/6L9IdCNSXA9lcL0gIMKRkls7mxOEoWizJKvY3OVQAQ/yG5vgRIlXiZ/dr+7b-
KIZ2WeUXlkTCGekVoI28xfcQOQpx4LDC25cJmRYzrHqsLM6Vk0GOLhMGLdljWshfVmIAwmT4ta9VOk-
SIrjYZyp17rYkvueg7V/74WJWzDjkTpkUIkidgrCS/YkM0cslcBAOIiD4NOfjeveChNao4YuW+WgMOl/
TcsAB11kItGKKO7GTS0xyjXE7KDymcGuVqVPF5xVxsCZs0TXthCKtDKok9PsqeodKewzTl9YkqjwpaL-
Valdz944zbrM/qBbeZMAmrYAk6r4wI2QfYbruBuQATm9Lfa5/KuTHKK6Hvy9MGDoQu137ukVb1YVaLEHEnD-
vOrhtL4Q4+FVunSn4vkXh67z0g8BZwTd4rC11xlKzS+vIxZEV6VQ4VjSraTdpb+U9ZJ8lCZ3XDOnN7U-
E4rVNhGcSo3wOWG4iFP6EMGzs+FQG9I7Vzm/nV298JV1+Fg17tzL2ig4eFyHWEaYCUJW/TmwBdkVmw7uBj8/
MNEJdTlznbJf+JV7yRl1DloEx6mA4G2os+Fk/BuLD76vmBF7HI0G04dQsPpkmWO345vRCVSw8Yj9OniaMu-
o03xv7/ZfBZHBMp19fP7saXZ+l1r/oMraNuk4iNv2LHhtPrgcT9tNTJfpHKP4NAAD//45F4qpKBwAA",
 "name": "airinfo",
 "operator": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Authorize",
 "privileges": {
 "List": [
 {
 "Priv": 1,
 "Target": "default:travel-sample"
 },
 {
 "Priv": 7,
 "Target": "default:travel-sample"
 }

300

]
 },
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan2",
 "index": "def_sourceairport",
 "index_id": "5c12fecece7db107",
 "index_projection": {
 "primary_key": true
 },
 "keyspace": "travel-sample",
 "namespace": "default",
 "spans": [
 {
 "exact": true,
 "range": [
 {
 "high": "$airport",
 "inclusion": 3,
 "low": "$airport"
 }
]
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Fetch",
 "as": "r",
 "keyspace": "travel-sample",
 "namespace": "default"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",

301

 "~children": [
 {
 "#operator": "Unnest",
 "as": "s",
 "expr": "('r'.'schedule')"
 }
]
 }
 },
 {
 "#operator": "Join",
 "as": "a",
 "keyspace": "travel-sample",
 "namespace": "default",
 "on_keys": "('r'.'airlineid')"
 },
 {
 "#operator": "Parallel",
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Filter",
 "condition":
 "(((('r'.'sourceairport')
= $airport) and (('r'.'destina							 tion-
air port') = $1)) and (('s'.'day') = $2))"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('a'.'name')"
 },
 {
 "expr": "('s'.'flight')"
 },
 {
 "expr": "('s'.'utc')"
 },
 {

302

 "expr": "('r'.'sourceair-
port')"
 },
 {
 "expr": "('r'.'destina-
tionairport')"
 },
 {
 "expr": "('r'.'equip-
ment')"
 }
]
 }
]
 }
 }
]
 },
 {
 "#operator": "Order",
 "sort_terms": [
 {
 "expr": "('a'.'name')"
 }
]
 },
 {
 "#operator": "FinalProject"
 }
]
 }
 },
 {
 "#operator": "Stream"
 }
]
 },
 "signature": {
 "destinationairport": "json",
 "equipment": "json",
 "flight": "json",

303

 "name": "json",
 "sourceairport": "json",
 "utc": "json"
 },
 "text": "prepare airinfo from SELECT a.name, s.flight, s.utc, r.sourceair-
port, r.destinationairport, r.equipment FROM 'travel-sample' r UNNEST r.schedule s JOIN
'travel-sample' a ON KEYS r.airlineid WHERE r.sourceairport=$airport AND r.destination-
airport=$1 AND s.day=$2 ORDER BY a.name;"
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "13.714593ms",
 "executionTime": "13.697482ms",
 "resultCount": 1,
 "resultSize": 8708
 }
}

The destination airport and the day can be positional parameters ($1 and $2), and the source

airport can be named parameter $airport. This is a named prepared statement airinfo.

cbq > \SET -args ["LAX", 6];
cbq > \PUSH -$airport "SJC";

Now when we execute the above prepared statement,

$airport for sourceairport in the query takes the value

"SJC", $1 for destination airport takes the value "LAX"

and $2 for day takes the value 6.

 cbq> execute airinfo;
{
 "requestID": "892826d7-2c00-4038-b447-99c1a1b-
87ba4",
 "signature": null,
 "results": [
 {
 "destinationairport": "LAX",
 "equipment": "73W",
 "flight": "FL449",
 "name": "AirTran Airways",
 "sourceairport": "SJC",

304

 "utc": "06:43:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CRJ CR7",
 "flight": "AA097",
 "name": "American Airlines",
 "sourceairport": "SJC",
 "utc": "09:25:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR9 CR7",
 "flight": "DL704",
 "name": "Delta Air Lines",
 "sourceairport": "SJC",
 "utc": "20:56:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR9 CR7",
 "flight": "DL634",
 "name": "Delta Air Lines",
 "sourceairport": "SJC",
 "utc": "03:30:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "73W 733 73C 73H 738",
 "flight": "WN483",
 "name": "Southwest Airlines",
 "sourceairport": "SJC",
 "utc": "19:37:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "73W 733 73C 73H 738",
 "flight": "WN505",
 "name": "Southwest Airlines",

305

 "sourceairport": "SJC",
 "utc": "20:39:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR7",
 "flight": "US884",
 "name": "US Airways",
 "sourceairport": "SJC",
 "utc": "22:33:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR7",
 "flight": "US005",
 "name": "US Airways",
 "sourceairport": "SJC",
 "utc": "23:04:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR7",
 "flight": "US859",
 "name": "US Airways",
 "sourceairport": "SJC",
 "utc": "01:00:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR7",
 "flight": "US842",
 "name": "US Airways",
 "sourceairport": "SJC",
 "utc": "00:35:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR7",
 "flight": "US417",
 "name": "US Airways",
 "sourceairport": "SJC",

306

 "utc": "18:56:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "CR7",
 "flight": "UA282",
 "name": "United Airlines",
 "sourceairport": "SJC",
 "utc": "21:02:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "320",
 "flight": "VX703",
 "name": "Virgin America",
 "sourceairport": "SJC",
 "utc": "09:43:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "320",
 "flight": "VX456",
 "name": "Virgin America",
 "sourceairport": "SJC",
 "utc": "13:38:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "320",
 "flight": "VX849",
 "name": "Virgin America",
 "sourceairport": "SJC",
 "utc": "04:33:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "320",
 "flight": "VX629",
 "name": "Virgin America",
 "sourceairport": "SJC",
 "utc": "03:56:00"
 }

307

],
 "status": "success",
 "metrics": {
 "elapsedTime": "32.608589ms",
 "executionTime": "32.593337ms",
 "resultCount": 16,
 "resultSize": 3543,
 "sortCount": 16
 }
}

Now lets say we want to execute the same prepared statements with different values for source

and destination airports on a different day.

cbq > \PUSH;

Issuing this command allows us to save the current state (values) of the parameters. Let us

verify this using the \SET command.

cbq> \SET;
 Query Parameters :
 Parameter name : args
 Value : [["LAX",6] ["LAX",6]]
 Named Parameters :
 Parameter name : airport
 Value : ["SJC" "SJC"]
 User Defined Session Parameters :
 Predefined Session Parameters :
 Parameter name : histfile
 Value : [".cbq_history"]
 Parameter name : batch
 Value : ["off"]
 Parameter name : quiet
 Value : [false]

As you can see above, the named parameter airport

and the args query parameter stacks have increased

in size by 1 with the top of the stack being copied and

pushed onto the top of the stack. We can now use \

SET to set these values.

It is important to note here that, we can also directly

push the new values of the corresponding parameters

onto the stack directly.

308

cbq > \SET -args ["SJC", 3];
cbq > \SET -$airport "LAX";

The above statements set the values at the top of the stack. Now when we check the values we

can see the new values :

cbq> \SET;
 Query Parameters :
 Parameter name : args
 Value : [["LAX",6] ["SJC",3]]
 Named Parameters :
 Parameter name : airport
 Value : ["SJC" "LAX"]
 User Defined Session Parameters :
 Predefined Session Parameters :
 Parameter name : histfile
 Value : [".cbq_history"]
 Parameter name : batch
 Value : ["off"]
 Parameter name : quiet
 Value : [false]

When we execute the prepared statement airinfo, it uses the values from the top of the

respective parameter stacks and provides results accordingly.

cbq> execute airinfo;
{
 "requestID": "6fe71ac9-f161-4f79-a558-2d2230b6ba89",
 "signature": null,
 "results": [
 {
 "destinationairport": "SJC",
 "equipment": "CR7 CRJ",
 "flight": "AA680",
 "name": "American Airlines",
 "sourceairport": "LAX",
 "utc": "03:22:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR7 CRJ",
 "flight": "AA632",

309

 "name": "American Airlines",
 "sourceairport": "LAX",
 "utc": "15:22:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR9 CR7",
 "flight": "DL859",
 "name": "Delta Air Lines",
 "sourceairport": "LAX",
 "utc": "00:25:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR9 CR7",
 "flight": "DL779",
 "name": "Delta Air Lines",
 "sourceairport": "LAX",
 "utc": "12:50:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR9 CR7",
 "flight": "DL272",
 "name": "Delta Air Lines",
 "sourceairport": "LAX",
 "utc": "17:55:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "73W 73C 733 738",
 "flight": "WN200",
 "name": "Southwest Airlines",
 "sourceairport": "LAX",
 "utc": "18:45:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "73W 73C 733 738",
 "flight": "WN059",
 "name": "Southwest Airlines",

310

 "sourceairport": "LAX",
 "utc": "16:59:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR7",
 "flight": "US655",
 "name": "US Airways",
 "sourceairport": "LAX",
 "utc": "14:11:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR7",
 "flight": "UA337",
 "name": "United Airlines",
 "sourceairport": "LAX",
 "utc": "04:10:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR7",
 "flight": "UA842",
 "name": "United Airlines",
 "sourceairport": "LAX",
 "utc": "21:21:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "CR7",
 "flight": "UA788",
 "name": "United Airlines",
 "sourceairport": "LAX",
 "utc": "09:25:00"
 },
 {
 "destinationairport": "SJC",
 "equipment": "320",
 "flight": "VX341",
 "name": "Virgin America",
 "sourceairport": "LAX",

311

 "utc": "08:28:00"
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "167.923055ms",
 "executionTime": "167.906948ms",
 "resultCount": 12,
 "resultSize": 2688,
 "sortCount": 12
 }
}

Since we have the results now, let us delete the top value of the stack for the positional

parameters and delete all values of the named parameter airport.

cbq > \POP -args;
cbq > \UNSET -$airport;

If we execute the prepared statement now, it will give

us an error because named parameter -$airport is not

defined.

cbq> execute airinfo;
{
 "requestID": "9407feab-abc3-4e5b-ba62-
713219278bbc",
 "signature": null,
 "results": [
],
 "errors": [
 {
 "code": 5010,
 "msg": "Error evaluating span. - cause: No value for named parameter $air-
port."
 }
],
 "status": "errors",
 "metrics": {
 "elapsedTime": "2.010702ms",
 "executionTime": "1.99434ms",
 "resultCount": 0,

312

 "resultSize": 0,
 "errorCount": 1
 }
}

We can set the value again and then execute the prepared statement. It will take the new values

and provide results.

cbq > \PUSH -$airport "SFO";
cbq> execute airinfo;
{
 "requestID": "d15d245a-e342-4e05-b19e-f30bbf0dce3b",
 "signature": null,
 "results": [
 {
 "destinationairport": "LAX",
 "equipment": "738",
 "flight": "AA740",
 "name": "American Airlines",
 "sourceairport": "SFO",
 "utc": "09:17:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "738",
 "flight": "AA607",
 "name": "American Airlines",
 "sourceairport": "SFO",
 "utc": "02:08:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "738",
 "flight": "AA654",
 "name": "American Airlines",
 "sourceairport": "SFO",
 "utc": "07:23:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "738",
 "flight": "AA927",

313

 "name": "American Airlines",
 "sourceairport": "SFO",
 "utc": "15:28:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "E75",
 "flight": "DL941",
 "name": "Delta Air Lines",
 "sourceairport": "SFO",
 "utc": "18:26:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "E75",
 "flight": "DL657",
 "name": "Delta Air Lines",
 "sourceairport": "SFO",
 "utc": "08:28:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "733 73W 73C",
 "flight": "WN269",
 "name": "Southwest Airlines",
 "sourceairport": "SFO",
 "utc": "23:51:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "733 73W 73C",
 "flight": "WN430",
 "name": "Southwest Airlines",
 "sourceairport": "SFO",
 "utc": "03:20:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "733 73W 73C",
 "flight": "WN440",
 "name": "Southwest Airlines",
 "sourceairport": "SFO",

314

 "utc": "21:19:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "733 73W 73C",
 "flight": "WN470",
 "name": "Southwest Airlines",
 "sourceairport": "SFO",
 "utc": "07:48:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "738",
 "flight": "US030",
 "name": "US Airways",
 "sourceairport": "SFO",
 "utc": "09:47:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "319 320 752 738 753 739",
 "flight": "UA664",
 "name": "United Airlines",
 "sourceairport": "SFO",
 "utc": "01:07:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "319 320 752 738 753 739",
 "flight": "UA812",
 "name": "United Airlines",
 "sourceairport": "SFO",
 "utc": "04:07:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "319 320 752 738 753 739",
 "flight": "UA517",
 "name": "United Airlines",
 "sourceairport": "SFO",
 "utc": "20:25:00"
 },

315

 {
 "destinationairport": "LAX",
 "equipment": "319 320 752 738 753 739",
 "flight": "UA938",
 "name": "United Airlines",
 "sourceairport": "SFO",
 "utc": "16:45:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "320 319",
 "flight": "VX851",
 "name": "Virgin America",
 "sourceairport": "SFO",
 "utc": "05:16:00"
 },
 {
 "destinationairport": "LAX",
 "equipment": "320 319",
 "flight": "VX942",
 "name": "Virgin America",
 "sourceairport": "SFO",
 "utc": "08:29:00"
 }
],
 "status": "success",
 "metrics": {
 "elapsedTime": "89.118664ms",
 "executionTime": "89.103172ms",
 "resultCount": 17,
 "resultSize": 3873,
 "sortCount": 17
 }
}

As we can see above, the design consideration to represent parameters using stacks allows for

better scripting and ease of use.

316

317

MASTERING THE COUCHBASE N1QL SHELL:
SCRIPTING
Author: Isha Kandaswamy

Part 3 of the 3 part series discussing the new and improved shell.

With the previous article, we saw how to interact with the N1QL Rest API and issue prepared

statements. With this article let us dive a little deeper into scripting with the N1QL shell.

Display specific parts of the query
In the previous article, we learnt how to interact with the Query Rest API using query

parameters. As we know the result returned from N1QL is of the following structure -

{
 "requestID": "0f27f703-3748-4006-99c9-65d35bd2c2df",
 "signature": {
 "$1": "number"
 },
 "results": [
],
 "status": "success",
 "metrics": {
 "elapsedTime": "361.908µs",
 "executionTime": "343.3µs",
 "resultCount": 1,
 "resultSize": 31
 }
}

It is possible for the user to change the response structure by setting the Rest API parameters-

metrics and signature. Both parameters take boolean values (true/false). When metrics is set to

false, the metrics are not returned with the query results. Similarly, when signature is set to false

the signature that defines the results schema in the response, is not displayed. By default these

values are true.

cbq> \SET -metrics false;
cbq> \SET -signature false;

The above will now give a response as follows

{
 "requestID": "0f27f703-3748-4006-99c9-65d35bd2c2df",
 "results": [

318

],
 "status": "success"
 }

For the detailed Rest API documentation refer here.

Scripting using User Defined Commands

There is a provision to create temporary commands (aliases) that map to other shell or

n1ql commands. In order to create the command use \ALIAS <command-name> <query or

command>. Once the alias has been created, we can see the list of new user defined commands

using \ALIAS; without any input arguments. This will display all of the aliases defined for the

current session.

These allow the user to repeatedly run a particular command easily by executing the alias

using a \\.

For example :

 cbq> \ALIAS n1qlVersion select version();
 cbq> \ALIAS;
 n1qlVersion	 select version()
 cbq> \\n1qlVersion;
 { ….

We can also display the command that the alias represents using the \ECHO command.

cbq> \ECHO \\serverversion;
select version()

https://developer.couchbase.com/documentation/server/current/n1ql/n1ql-rest-api/index.html

319

File Based Operations

N1QL and shell commands contained in files can be executed by using the file based commands

and options.

Say we need to store a script with multiple commands (for eg in a .n1ql file) and then run it

periodically. This can be done either using the --file option or the \SOURCE shell command.

This will run all the commands in the input file and redirect the output to STDOUT. The user

can also save all the queries and their corresponding results into a result file using the --output

option and the \REDIRECT command. When the \REDIRECT command is issued with a filename,

then it saves the output of all the queries run into the given file. In order to save to STDOUT

again, we can issue \REDIRECT OFF. This will return the shell to its default status of printing the

output on STDOUT.

In order to redirect a specific set of commands during a session to a specified file the

user can use

\REDIRECT <filename>;
<command1>;<command2> …. <commandn>;
\REDIRECT OFF ;

All the commands specified after \REDIRECT and before \REDIRECT OFF are saved into the

output file specified by <filename>.

320

If the file doesn’t exist then it is created. Let us look at the following example.

Say we have 2 files - demo.txt and file1.txt. Both contain different query commands.

demo.txt

create primary index on 'travel-sample';
#Find flight information, from source to destination on a leave date;
#Find schedule information for an airline that services the requested flight path;
\ALIAS airinfo SELECT a.name, s.flight, s.utc, r.sourceairport, r.destinationairport,
r.equipment FROM 'travel-sample' r UNNEST r.schedule s JOIN 'travel-sample' a ON KEYS
r.airlineid WHERE r.sourceairport=$airport AND r.destinationairport=$1 AND s.day=$2
ORDER BY a.name;
\ALIAS;
\SET -args ["SEA", 6];
\SET -$airport "SFO";
\\airinfo;
\SOURCE examples/file2.txt;
\ECHO -args -$airport;
\REDIRECT output_file.txt;
\SOURCE examples/file2.txt;
\REDIRECT off;
\QUIT;
----- End of demo.txt

Here, in demo.txt, the alias (user defined command) airinfo is created. The alias contains

references to the named parameter $airport and the positional parameter that represents the

destination airport. This is similar to the example seen in part 2 of this series.

Once values are set for both parameters, the script loads file2.txt using \SOURCE command.

At this point, the contents of the new file are read, and the commands in file2.txt are executed.

file2.txt

\PUSH;
\SET -$airport "SJC";
\SET -args ["LAX", 6];
\\airinfo;
\SET;
\POP;
----- End of file2.txt

Once all the commands in file2.txt have been executed, we come back to demo.txt and the next

command (here the \ECHO command to echo the values of the parameters set) is executed.

321

Up until this point the results of all of the queries were being directed to the terminal itself

(stdout). Once the \REDIRECT output_file.txt is run, up until the \REDIRECT OFF command

is run, all results will be directed to the output_file.txt. As we see in this example, between \

REDIRECT and \REDIRECT OFF, only the \SOURCE command is present in the script. So finally

output_file.txt will contain the results of the commands in file2.txt.

It is possible to call multiple files in a single run. This can be seen in the examples here. In order

to run the above examples, run the command

./cbq -file=demo.txt

against your couchbase cluster after adding the travel-sample bucket.

Another example can be where we prepare a query in the main file and multiple files can

contain commands to execute the prepared statement with different values(for the named and

positional parameters within the query), which in turn can be redirected to different output files,

allowing better comparison between corresponding outputs.

This powerful ability to call multiple files containing different commands, in a nested fashion,

and redirect the desired output to specific files allows for better scripting.

The user can also execute a single command and exit the shell using the --script option.

Piping commands into cbq

The shell also allows running commands by redirection and piping instead of using the provided

options and commands. Below are some examples on piping commands to cbq shell from the

terminal.

 $ echo "select * from \'beer-sample\' limit 10;" | ./cbq

 …..

 $ cat file.txt | ./cbq

 $./cbq < file.txt

Multi-line input and single-query / batch mode

User input can span multiple lines; this includes N1QL statements and shell commands. The

prompt indicates that the shell is in multiline mode with the command prompt and the lines are

automatically word-wrapped. In the multiline mode in the shell, if a line is preceded by a # or – it

counts as a comment.

For N1QL all queries run in single-query mode because the server handles a single query at a

time. In order to connect cbq to the Analytics service, the shell batch mode can be used. (See

article on Running Analytics queries with the N1QL shell.)

322

Exit on error

One issue when running in a multi-node cluster environment with different configurations for

each node is that we cannot predict when a node goes down. In the event this happens, the

queries in our script might error out which might cause the subsequent statements/commands

to error. In order to avoid these kinds of situations we can use the --exit-on-error option which

will cause the cbq script to stop and exit after the first error is encountered. This helps during

scripting when we want to run a bunch of queries contingent on the first command being run

successfully. As an example, say our script first prepares a statement and then executes this

statement with different values for the positional and named parameters. If the prepare returns

an error, all subsequent commands will also error out. Here we can use the --exit-on-error

option to make sure we prepare the statement properly before executing it.

Now that we have seen some aspects of the shell, it’s time to start exploring! Refer to

https://developer.couchbase.com/documentation/server/current/tools/cbq-shell.html

for a comprehensive documentation of the shell commands and options.

https://developer.couchbase.com/documentation/server/current/tools/cbq-shell.html

323323

QUERY PERFORMANCE MONITORING MADE EASY
WITH COUCHBASE N1QL
Author: Marco Greco

This article discusses the new monitoring capabilities of N1QL introduced in Couchbase Server 4.5

One of the major breakthroughs of Couchbase Server 4.0 was the introduction of a SQL-based

query language specifically created to handle JSON documents: N1QL. Extolling the virtues of

N1QL is not the aim of this article, but you can sample its capabilities here, here, and here.

What we are going to concentrate on here is how to use N1QL monitoring capabilities

introduced in version 4.5, specifically with a goal to discover and fix poorly performing requests.

Let’s face it — even with all the good will in the world, there will be times when things don’t

work as expected, and when this happens you need tools to discover the culprit and investigate

the erroneous behaviour. More importantly, and this is almost invariably overlooked, monitoring

is not only for rainy days, but for good weather too! When the sun shines, you can use

monitoring tools preventively to find the likely direction the next rain is going to come from.

But let’s start from the beginning.

N1QL’s Monitoring Infrastructure

Starting from Couchbase 4.5 N1QL exposes the active requests executing in the Query Service

and the prepared statements dataset both via N1QL itself and via specific administrative REST

endpoints. More interestingly, the query service can now track requests that have executed

for longer than a predetermined amount of time in the completed requests log, again exposed

via a REST endpoint and N1QL. All three endpoints and keyspaces report a host of useful

request related data which, when aggregated, can give good insight as to how the N1QL service

resources are being used.

Lifecycle of a N1QL Request

Before we delve into the nitty gritty of monitoring, it may be worth painting the relationship

between the life of a N1QL request and the various monitoring datasets. A picture is worth a

thousand words, so rather than describing in detail how things change in time, I’ll let some fancy

infographics do the talking:

https://dzone.com/articles/keep-calm-and-query-json
https://dzone.com/articles/understanding-index-scans-in-couchbase-n1ql-query
https://dzone.com/articles/nesting-and-unnesting-in-couchbase-n1ql

324

325

REST Endpoints

•	 http://<N1QL node IP address>:8093/admin/vitals

•	 http://<N1QL node IP address>:8093/admin/active_requests

•	 http://<N1QL node IP address>:8093/admin/completed_requests

•	 http://<N1QL node IP address>:8093/admin/prepareds

To be clear, each endpoint only returns information collected from the specific query node in

the URL accessed, and not the entire Couchbase cluster: to collect information from all nodes

via REST, you will have to manually loop through all Query nodes.

You will note that an endpoint we have so far not mentioned has sneakily made its way through

the previous endpoint list: /admin/vitals.

Vitals

Vitals, as the name implies, returns vital signs of the local query node.

Among the information provided is the node’s uptime, local time, version, and more interesting

stuff like memory and CPU usage, cores and allocated threads, garbage collector operation,

request counts and request time percentiles.

	 curl -X GET http://localhost:8093/admin/vitals

Which produces documents of this sort:

	 {"uptime":"66h6m9.965439555s","local.time":"2016-11-04 11:55:31.340325632 +0000
	 GMT",
	 "version":"1.5.0","total.threads":213,"cores":8,"gc.num":8379306,
	 "gc.pause.time":"3.500846278s","gc.pause.percent":0,"memory.usage":6710208,
	 "memory.total":36982771064,"memory.system":52574456,"cpu.user.percent":0,
	 "cpu.sys.percent":0,"request.completed.count":61,"request.active.count":0,
	 "request.per.sec.1min":0,"request.per.sec.5min":0,"request.per.sec.15min":0,
	 "request_time.mean":"365.708343ms","request_time.median":"784.055µs",
	 "request_time.80percentile":"417.369525ms",
	 "request_time.95percentile":"2.347575326s",
	 "request_time.99percentile":"5.669627409s","request.prepared.percent":0}

The only supported method is GET, and the output is not pretty-formatted (by way of

clarification, pretty is an attribute of JSON documents returned by the N1QL service which

determines if the document is formatted or not and can be set at the service or request level to

either true or false, but for admin endpoints, it is always set to false).

326

Active Requests

The active_request endpoints provide information about all active requests...

•	 GET http://<N1QL node IP address>:8093/admin/active_requests
...individual active requests...

•	 GET http://<N1QL node IP address>:8093/admin/active_requests/<request id>
...and, more importantly, the ability to cancel requests for whatever reason.

•	 DELETE http://<N1QL node IP address>:8093/admin/active_requests/<request id>

As an example

	 curl -X GET http://localhost:8093/admin/active_requests

Again, the resulting document is not pretty-formatted.

	 [{"elapsedTime":"1.525668112s","executionTime":"1.525635694s",
 	 "phaseCounts":{"Fetch":11280,"PrimaryScan":11716},
 	 "phaseOperators":{"Fetch":1,"PrimaryScan":1},
 	 "requestId":"0b1d33a7-db3f-4a8e-86ff-63aee969fbbe",
 	 "requestTime":"2016-11-04T12:03:13.25494174Z",
 	 "scanConsistency":"unbounded","state":"running",
 	 "statement":"select * from 'travel-sample';"}]

Completed Requests

This endpoint reports the same information as active_requests, but for the completed

requests cache.

•	 GET http://<N1QL node IP address>:8093/admin/completed_requests

•	 GET http://<N1QL node IP address>:8093/admin/completed_requests/<request id>

•	 DELETE http://<N1QL node IP address>:8093/admin/completed_requests/<request id>

Unlike active_requests, a DELETE on completed_requests only removes an entry from the cache.

The completed request cache by default logs the last 4000 requests lasting more than 1 second

that have run on the local node. The cache size and time threshold can be set via the /admin/

settings endpoint via the “completed-limit” and “completed-threshold” fields, for example:

	 curl http://localhost:8093/admin/settings -u Administrator:password -d
	 '{ "completed-limit": 10000 }'

327

Prepared Statements

...and again for prepared statements

•	 GET http://<N1QL node IP address>:8093/admin/prepareds

•	 GET http://<N1QL node IP address>:8093/admin/prepareds/<prepared statement name>

•	 DELETE http://<N1QL node IP address>:8093/admin/prepareds/<prepared statement
name>

Getting Monitoring Information via System Keyspaces

A more interesting way to access the N1QL caches is via N1QL itself. For each of the admin

REST endpoints (active_requests, completed_requests, prepareds) there is a corresponding

keyspace in the system namespace. So, for example, active requests can be directly accessed

from the query service via a simple

	 select * from system:active_requests;

While the REST API can provide monitoring information at a relatively low cost, using system

keyspaces offers the opportunity to unleash all of N1QL’s query capabilities over the monitoring

information. We will explore a few more advanced examples to make the point. The examples

below are specific to Couchbase Server 4.5.

Preparation

We will use the beer-sample bucket in order to provide some load for the following examples.

	 Create a secondary index on 'beer-sample'(city)

 Start up a few client applications preparing

	 select *
 	 from 'beer-sample'
 	 use keys["21st_amendment_brewery_cafe-amendment_pale_ale"];
and

	 select *
 	 from 'beer-sample'
 	 where city = "Lawton";

And then executing the statements above for, say, 10000 times per client.

Too much load on the node.

328

Among the useful information reported by the system:active_requests keyspace there are two

pieces of timing information:

•	 Elapsed time

•	 Execution time

The first starts being accrued as soon as the N1QL service becomes aware of the request, the

second as soon as the request is being executed.

Under normal circumstances there should be very little difference in between the two times, so

the following query...

	 select avg(100*
 	 (str_to_duration(elapsedTime) - str_to_duration(executionTime))/
 	 str_to_duration(elapsedTime)), count(*)
 	 from system:active_requests;

...should return only a few percentage points (say 1 to 3%):

	 {
 	 "requestID": "137b5777-d420-45e9-bbef-0b15197c9a93",
 	 "signature": {
 		 "$1": "number",
 		 "$2": "number"
	 },
 	 "results": [
 		 {
 	 "$1": 3.210601953400783,
 	 "$2": 8
 	 }
],
 	 "status": "success",
 	 "metrics": {
 		 "elapsedTime": "1.938543ms",
 		 "executionTime": "1.910804ms",
 		 "resultCount": 1,
 		 "resultSize": 68
	 }
	 }

The query itself should execute quite quickly. When the server is under stress, requests will

most probably be queued before being executed and the ratio of elapsed to execution time

will increase — to put it in perspective a value of 50 means that the request is spending just

as much time queued as being executed. In general terms, once the node is under stress, the

query above will plateau at a specific percentage point. On my development machine this is

329

about 25% (although higher spikes will make an appearance from time to time), however, a tell

tale sign of the node being under stress is that the elapsed to execution ratio of the query itself

is quite high:

	 {
 	 "requestID": "8cafcd14-fbdb-48bd-a35d-9f0fb03752ae",
 	 "signature": {
 	 "$1": "number",
 	 "$2": "number"
 	 },
 	 "results": [
 	 {
 	 "$1": 35.770020645707156,
 	 "$2": 94
 	 }
],
 	 "status": "success",
 	 "metrics": {
 	 "elapsedTime": "29.999017ms",
 "executionTime": "3.864563ms",
 "resultCount": 1,
 "resultSize": 48
 	 }
 }

A similar query can be run against the system:completed_requests keyspace. Again high

execution to elapsed ratio is an indication that the system is under stress: long running queries

on a node with spare capacity instead show a high execution time with a very queueing ratio.

Prepared Statements With Highest Total Execution Time

The system:prepareds keyspace returns average execution time and number of executions for

each prepared statement.

Since the same statement can be prepared anonymously by several clients under several names,

summing average service times multiplied by uses and grouped by statement text gives a good

idea of the total execution cost of each statement.

	 select sum(str_to_duration(avgServiceTime)*uses/1000000000) ttime, statement
 	 from system:prepareds
 	 where avgServiceTime is not missing
 	 group by statement
 	 order by ttime;

330

The query above returns the overall execution time in seconds for each statement

	 [
 	 {
 	 "statement": "PREPARE SELECT * FROM 'beer-sample' USE KEYS[\"21st_amendment_
	 brewery_cafe-amendment_pale_ale\"];",
 	 "ttime": 515.6239400000001
	 },
 	 {
 	 "statement": "PREPARE select * from 'beer-sample' where city = \"Lawton\";",
 	 "ttime": 1506.407181327
	 }
]

Prepared Statements With Highest Execution Count

Extending the concept further, it's possible to determine the prepared statements that have

been used the most.

For example...

	 select sum(uses) usecount, statement
 	 from system:prepareds
 	 where uses is not missing
 	 group by statement
 	 order by usecount desc;

...returns:

	 [
 	 {
 	 "statement": "PREPARE SELECT * FROM 'beer-sample' USE KEYS[\"21st_amendment_
	 brewery_cafe-amendment_pale_ale\"];",
 	 "usecount": 200000
	 },
	 {
 	 "statement": "PREPARE select * from 'beer-sample' where city = \"Lawton\";",
 	 "usecount": 5393
	 }
]

331

Prepared Statements With Highest Prepare Count

...or the statements that have been prepared by the most clients:

	 select count(*) prepcount, statement
 	 from system:prepareds
 	 group by statement
 	 order by prepcount desc;

which yields:

	 [
 	 {
 	 "prepcount": 20,
 	 "statement": "PREPARE SELECT * FROM 'beer-sample' USE KEYS[\"21st_amendment_
	 brewery_cafe-amendment_pale_ale\"];"
 	 },
 	 {
 	 "prepcount": 2,
 	 "statement": "PREPARE select * from 'beer-sample' where city = \"Lawton\";"
 	 }
]

Requests Using Suboptimal Paths

Another important piece of information reported by both system:active_requests and

system:completed_requests is the number of documents processed by each execution phase.

This information is interesting for at least two different reasons. The first is, even though the

system keyspaces do not report a request plan, and therefore individual query paths are not

known, we can still draw a fair amount of information from the fact that specific phases are

used. For example, primary scans are the N1QL equivalent of RDBMS’s sequential scans - unless

very small buckets are involved, where an ad hoc index adds no performance benefit, primary

scans are best avoided. Similarly, you may have already heard that covering indexes (indexes

whose keys encompass all the expressions in the select list) are preferable to non covering

indexes, because when the index chosen is not covering, request execution will require a Fetch

phase after the index scan, in order to access each document, which clearly requires further

effort on the N1QL service part. The mere presence of a Fetch phase is a dead giveaway that

covering indexes are not being used. The second reason, more obvious, is that document counts

instantly give a sense of the cost of individual phases, and by extension, individual requests. We

will now explore a few use cases exploiting phase counts.

332

Preparation

From cbq, execute a few.

	 select * from 'travel-sample';

Requests Using Primary Scans

As stated earlier, all we are looking for is requests where the PhaseCounts subdocuments has a

PrimaryScan field:

	 select *
 	 from system:completed_requests
 	 where phaseCounts.'primaryScan' is not missing;

Which in our case yields:

	 [
 	 {
 	 "completed_requests": {
 	 "clientContextID": "02a9db12-1bb8-4669-b2c6-c6e1d50525d2",
 	 "elapsedTime": "35.638999968s",
 	 "errorCount": 0,
 	 "phaseCounts": {
 	 "fetch": 31591,
 	 "primaryScan": 31591
 	 },
 	 "phaseOperators": {
 	 "fetch": 1,
 	 "primaryScan": 1
 	 },
 	 "requestId": "ade384a9-367b-4241-8307-68cf923f9b8c",
 	 "resultCount": 31591,
 	 "resultSize": 107829252,
 	 "serviceTime": "35.638946836s",
 	 "state": "completed",
 	 "statement": "select * from 'travel-sample'",
 	 "time": "2016-11-10 13:26:53.80370308 -0800 PST"
 	 }
 	 },
 	 {
 	 "completed_requests": {
 	 "clientContextID": "0afc6ce3-5c09-4fbd-9cec-6f8719a3dff1",
 	 "elapsedTime": "42.179613979s",

333

 	 "errorCount": 0,
 	 "phaseCounts": {
 	 "fetch": 31591,
 	 "primaryScan": 31591
 	 },
 	 "phaseOperators": {
 	 "fetch": 1,
 	 "primaryScan": 1
 	 },
 	 "requestId": "874d4493-af76-49e6-9b89-e9323c33915f",
 	 "resultCount": 31591,
 	 "resultSize": 107829252,
 	 "serviceTime": "42.17955482s",
 	 "state": "completed",
 	 "statement": "select * from 'travel-sample'",
 	 "time": "2016-11-10 13:27:45.641104619 -0800 PST"
 	 }
 	 },
 	 {
 	 "completed_requests": {
 	 "clientContextID": "6850f34d-5d9c-49c1-91ac-88ce6265c5ac",
 	 "elapsedTime": "36.769111048s",
 	 "errorCount": 0,
 	 "phaseCounts": {
 	 "fetch": 31591,
 	 "primaryScan": 31591
 	 },
 	 "phaseOperators": {
 	 "fetch": 1,
 	 "primaryScan": 1
 	 },
 	 "requestId": "a6ebd56f-9562-4532-8d97-d26bacc2ce81",
 	 "resultCount": 31591,
 	 "resultSize": 107829252,
 	 "serviceTime": "36.769063345s",
 	 "state": "completed",
 	 "statement": "select * from 'travel-sample'",
 	 "time": "2016-11-10 13:26:05.510344804 -0800 PST"
 	 }
 	 }
]

334

Preparation

The example below requires a secondary index on `travel-sample`(type)

Execute the following query:

	 select id
 	 from 'travel-sample'
 	 where type="route" and any s in schedule satisfies s.flight="AZ917" end;

Requests not Using Covering Indexes

In a similar way, we can find non covering indexes by stipulating that the requests we are

looking for have both index scans and fetches in the PhaseCounts subdocument:

	 select *
 	 from system:completed_requests
 	 where phaseCounts.'indexScan' is not missing
 	 and phaseCounts.'fetch' is not missing;

Which, in our case yields:

	 [
 	 {
 	 "completed_requests": {
 	 "clientContextID": "e5f0e69a-ff3e-47e4-90c7-881772c2e1b7",
 	 "elapsedTime": "2.877312961s",
 	 "errorCount": 0,
 	 "phaseCounts": {
 	 "fetch": 24024,
 	 "indexScan": 24024
 	 },
 	 "phaseOperators": {
 	 "fetch": 1,
 	 "indexScan": 1
 	 },
 	 "requestId": "12402dd8-430a-4c32-84c1-a59b88695e66",
 	 "resultCount": 10,
 	 "resultSize": 350,
 	 "serviceTime": "2.8772514s",
 	 "state": "completed",
 	 "statement": "select id from 'travel-sample' where type=\"route\" and any
 	 s in schedule satisfies s.flight=\"AZ917\" end;",
 	 "time": "2016-11-10 13:10:00.04988112 -0800 PST"
 	 }

335

 	 }
]

Requests Using a Poorly Selective Index

Loosely speaking, Selectivity is that property of a predicate which indicates how good that

predicate is at isolating those documents which are relevant for the query result set. In general

terms, when using an index scan, we would like to have the scan return only the relevant

document keys, and no more, so that later stages of the plan (eg, fetch or filter) only have to

operate on relevant documents. A simple measure of poor selectivity of a predicate is the total

number of keys (or documents) to be considered by the predicate divided by the number of

documents that satisfy the predicate - the higher the number, the worse the selectivity (in

general terms selectivity is defined as the number qualifying items divided by the total number

of items).

Clearly, when an index path is in use, we would like that the relevant filters are as relevant as

possible, and we can determine if this is the case by just measuring the number of documents

fetched against the number of documents returned.

The query below finds requests that do use indexes and that have a number of fetches to results

ratio greater than ten. This means that the request fetches ten documents for each document

that satisfies all the predicates in the where clause: you threshold may very well be different

(and lower, I would suggest!).

	 select phaseCounts.'fetch' / resultCount efficiency, *
 	 from system:completed_requests
 	 where phaseCounts.'indexScan' is not missing
 	 and phaseCounts.'fetch' / resultCount > 10
 	 order by efficiency desc;

In our case, this yields:

	 [
	 {
	 "completed_requests": {
	 "clientContextID": "e5f0e69a-ff3e-47e4-90c7-881772c2e1b7",
	 "elapsedTime": "2.877312961s",
	 "errorCount": 0,
	 "phaseCounts": {
	 "fetch": 24024,
	 "indexScan": 24024
	 },
	 "phaseOperators": {
	 "fetch": 1,

336

	 "indexScan": 1
	 },
	 "requestId": "12402dd8-430a-4c32-84c1-a59b88695e66",
	 "resultCount": 10,
	 "resultSize": 350,
	 "ServiceTime": "2.8772514s",
	 "state": "completed",
	 "statement": "select id from 'travel-sample' where type=\"route\" and any s
	 in schedule satisfies s.flight=\"AZ917\" end;",
	 "time": "2016-11-10 13:10:00.04988112 -0800 PST"
	 },
	 "efficiency": 2402.4
	 }
]

Determining Requests With the Highest Cost

As we were saying earlier, phaseCounts give a ready sense of individual phases cost. Sum them

up, and you can get a measure of the cost of individual requests.

In the statement below we turn the phaseCounts subdocument into an array in order to tot up

the cost:

	 select statement, array_sum(object_values(phaseCounts)) cost
	 from system:completed_requests
	 order by cost desc;

This returns the statements we run earlier in order of decreasing cost:

	 [
	 {
	 "statement": "select * from 'travel-sample'",
	 "cost": 63182
	 },
	 {
	 "statement": "select * from 'travel-sample'",
	 "cost": 63182
	 },
	 {
	 "statement": "select * from 'travel-sample'",
	 "cost": 63182
	 },

337

	 {
	 "statement": "select id from 'travel-sample' where type=\"route\" and
	 any s in schedule satisfies s.flight=\"AZ917\" end",
	 "cost": 48048
	 }
]

Aggregating Execution Times for Completed Requests

Determining total execution times for individual statement texts is not only the preserve of

prepared statements. A very similar technique can be used on system:completed_requests.

Further, this can be combined with filtering for suboptimal paths. The following query looks

for requests having used a primary scan, returning several aggregates for each individual

statement:

	 select count(*) num,
	 min(serviceTime) minEx, max(serviceTime) maxEx,
	 avg(str_to_duration(serviceTime)/1000000000) avgEx,
	 statement
	 from system:completed_requests
	 where phaseCounts.primaryScan is not missing
	 group by statement;

Note that execution times are strings, and in principle they should be turned into durations in

order to be aggregated properly. This is what we are doing for avg():

	 [
	 {
	 "statement": "select * from 'travel-sample'",
	 "avgEx": 38.19585500033333,
	 "maxEx": "42.17955482s",
	 "minEx": "35.638946836s",
	 "num": 3
	 }
]

338

Canceling Requests

We have seen before that a rogue request can be cancelled using the REST API.

This can be achieved through N1QL directly by simply deleting from system:active_requests:

	 delete from system:active_requests
	 where requestId="d3b607d4-1ff1-49c8-994e-8b7e6828f6a0";

(replace the request id in quotes with the requestId of the request you wish to cancel).

But while REST can operate only on a request by request basis, N1QL allows for more creative

operations. For example, we can stop all executing instances of a specific statement:

	 delete from system:active_requests
	 where statement = "select * from 'travel-sample'";

Similarly, we can stop all instances of a specific prepared statement:

	 delete from system:active_requests
	 where 'Prepared.Name' = "s1";

Further, we can prevent all instances of the culprit prepared statement from executing again (at

least, until it is prepared again!) by removing said instances from the prepared statement cache:

	 delete from system:prepareds
	 where 'statement' = "prepare select * from 'travel-sample'";

In all of the examples above, please be mindful that we are using an equality predicate on the

statement text: if you have several variations of the same statement (eg lower case versus

upper case, or different amounts of spacing, or…), you’ll either have to match them individually,

or have a more comprehensive filter.

339

Getting monitoring information via the Query UI

Starting from version 5.0, the Query tab of the UI sports a Query Monitoring view providing

live information on currently running requests, completed slow running requests and prepared

statements:

The view refreshes automatically, and offers the option to cancel requests and copy request

texts into the Query Editor.

Summary

N1QL offers a wide array of powerful monitoring tools which can quickly identify poor

performing statements or statements that are likely to become a bottleneck.

Examples have been provided to detect several different types of requests which are interesting

for resource planning purposes.

Author’s Note

The examples provided are specific to Couchbase Server 5.0. In previous versions , some

keyspace fields may have a different capitalization.

340

341341

OPTIMIZE N1QL PERFORMANCE USING REQUEST
PROFILING

Monitoring uncovered the resource hog. Now what?

Author: Marco Greco

Couchbase Server 4.5 introduced a mechanism to keep an eye on executing requests, so that

slow performers could be highlighted.

This article covers the subject of N1QL monitoring in great detail, but the question now is - we

have the rioters, how do we check their demands?

In general terms, every database engine provides means to analyse the query plan used by a

request to return data, in the form of some sort of EXPLAIN statement, but this does exactly

what the word says: it explains the plan, but it does not actually say what part of the plan is

misbehaving, using hard numbers.

Experienced database administrators can tell, using a mixture of, well, experience, heuristics

and gut feelings how a specific plan could be improved, but this specific skill set requires a

substantial amount of training, and, to be fair, a certain degree of guesswork is involved too.

Can we do better?

Enter profiling

Couchbase 5.0 introduces, among other things, the ability to collect metrics on all moving parts

of individual requests.

When the feature is enabled, profiling information is returned by the request following the

results document, and it is available in system keyspaces for later processing.

This metric shows the execution tree in detail, with such information as the time spent in each

operator an and in each processing phase, as well as the documents ingested and digested.

Armed with this trove of data, database administrators can easily identify the costly operators

in a request and address the problem, for example, creating the right index to minimize the

number of qualified keys returned by the index scan.

But let’s start from the beginning.

https://dzone.com/articles/query-performance-monitoring-made-easy-with-couchb

342

Enabling profiling

The more frequent use of profiling is to understand why a particular statement is slow.

As such, the slow statement has already been identified and it is probably being tested in a

sandbox environment - the only information needed is the culprit statement text and there’s no

need to collect profiles from anything else.

Conversely, a production node may be going through a slow patch.

The culprit request has not been identified and it is important to collect all available diagnostic

information immediately so that once the slow request is identified, the profiling is already

available without having to rerun the offending statement.

At the request level

This can be done with the profile request REST API parameter, passed to the query service

alongside the request statement - ideal for investigating individual statements.

This could be down at the lowest possible level, as exemplified by this curl example

	 curl http://localhost:8093/query/service -d 'statement=select *
	 from 'travel-sample'&profile=timings' -u Administrator:password

Or more simply from a cbq shell session

	 cbq> \set -profile timings;

Query Workbench enables profiling by default as we will see later.

The profile parameter takes three values: off (the default), phases, and timings.

The first, as expected, just disables the feature.

The second enables a summary of execution timings for each request phase, while the last offers

the highest level of information available: full timings on a per execution operator basis.

At the service level

When profiling is required across all requests, it can be enable at node startup via the -profile

command line parameter.

This takes the same arguments as the query REST API parameter, with the same meaning.

Any request that does not specify any profiling level at the REST API level takes the value of the

command line argument as the selected option.

http://localhost:8093/query/service

343

On the fly

When production clusters are showing signs of fatigue, it is possible to change query service

profile setting on the fly via the admin/settings REST endpoint, as an example

	 curl http://localhost:8093/admin/settings -d '{ "profile": "timings"}'
	 -u Administrator:password

This has the same effect as initializing the query service using the -profile command line

parameter, however it also applies to requests that have already started, meaning that when

the requests does not specify a query level profile setting, it will take the newly set level as the

selected option.

It is important to know that profiling information is collected at all times - the switches above

merely determine if and how much information is reported.

It is therefore possible to retroactively turn on profiling for requests that had already started,

meaning that when noticing a system slowdown, a DBA can profile all already running requests,

without having to resubmit any of the requests or investigate first which one is mis-performing!

Obtaining profiling information

Individual request profiling information is made available as a json subdocument detailing the

execution tree.

In general terms, this is a structure in the same format and very close contents as the EXPLAIN

statement output, but augmented with execution statistics.

This can be accessed by the client application, via the response document (which is useful for

one off investigations), and third parties, via the system keyspaces, which is useful for instance

to compare different variations on the same statement, or execution of the same statement with

different values for placeholders.

From the request response

The following example shows the execution of a statement in cbq, with profiling turned on

	 cbq> \set -profile timings;
	 cbq> select * from 'travel-sample' limit 1;
	 {
	 "requestID": "eff5d221-fc0d-459f-9de3-727747368a3e",
	 "signature": {
	 "*": "*"
	 },
	 "results": [

344

	 {
	 "travel-sample": {
	 "callsign": "MILE-AIR",
	 "country": "United States",
	 "iata": "Q5",
	 "icao": "MLA",
	 "id": 10,
	 "name": "40-Mile Air",
	 "type": "airline"
	 }
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "65.441768ms",
	 "executionTime": "65.429661ms",
	 "resultCount": 1,
	 "resultSize": 300
	 },
	 "profile": {
	 "phaseTimes": {
	 	 "authorize": "1.544104ms",
	 	 "fetch": "1.776843ms",
	 	 "instantiate": "777.209µs",
	 	 "parse": "840.796µs",
	 	 "plan": "53.121896ms",
	 	 "primaryScan": "6.741329ms",
	 	 "run": "10.244259ms"
	 	 },
	 "phaseCounts": {
	 	 "fetch": 1,
	 	 "primaryScan": 1
	 	 },
	 "phaseOperators": {
	 	 "authorize": 1,
	 	 "fetch": 1,
	 	 "primaryScan": 1
	 	 },
	 "executionTimings": {
	 	 "#operator": "Sequence",
	 	 "#stats": {

345

	 	 "#phaseSwitches": 2,
	 	 "execTime": "3.41µs",
	 	 "kernTime": "10.23877ms"
	 	 },
	 	 "~children": [
	 	 {
	 	 "#operator": "Authorize",
	 	 "#stats": {
	 	 "#phaseSwitches": 4,
	 	 "execTime": "3.268µs",
	 	 "kernTime": "8.651859ms",
	 	 "servTime": "1.540836ms"
	 	 },
	 	 "privileges": {
	 	 "List": [
	 	 {
	 	 "Target": "default:travel-sample",
	 	 "Priv": 7
	 	 }
]
	 	 },
	 	 "~child": {
	 	 "#operator": "Sequence",
	 	 "#stats": {
	 	 "#phaseSwitches": 3,
	 	 "execTime": "8.764µs",
	 	 "kernTime": "8.639269ms"
	 	 },
	 	 "~children": [
	 	 {
	 	 "#operator": "Sequence",
	 	 "#stats": {
	 	 "#phaseSwitches": 2,
	 	 "execTime": "8.037µs",
	 	 "kernTime": "8.591094ms"
	 	 },
	 	 "~children": [
	 	 {
	 	 "#operator": "PrimaryScan",
	 	 "#stats": {
	 	 "#itemsOut": 1,

346

	 	 "#phaseSwitches": 7,
	 	 "execTime": "6.254658ms",
	 	 "kernTime": "1.609µs",
	 	 "servTime": "486.671µs"
	 	 },
	 	 "index": "def_primary",
	 	 "keyspace": "travel-sample",
	 	 "limit": "1",
	 	 "namespace": "default",
	 	 "using": "gsi"
	 	 },
	 	 {
	 	 "#operator": "Fetch",
	 	 "#stats": {
	 	 "#itemsIn": 1,
	 	 "#itemsOut": 1,
	 	 "#phaseSwitches": 11,
	 	 "execTime": "48.055µs",
	 	 "kernTime": "6.766558ms",
	 	 "servTime": "1.728788ms"
	 	 },
	 	 "keyspace": "travel-sample",
	 	 "namespace": "default"
	 	 },
	 	 {
	 	 "#operator": "Sequence",
	 	 "#stats": {
	 	 "#phaseSwitches": 5,
	 	 "execTime": "1.675µs",
	 	 "kernTime": "8.580305ms"
	 	 },
	 	 "~children": [
	 	 {
	 	 "#operator": "InitialProject",
	 	 "#stats": {
	 	 "#itemsIn": 1,
	 	 "#itemsOut": 1,
	 	 "#phaseSwitches": 9,
	 	 "execTime": "4.113µs",
	 	 "kernTime": "8.555317ms"
	 	 },

347

	 	 "result_terms": [
	 	 {
	 	 "expr": "self",
	 	 "star": true
	 	 }
]
	 	 },
	 	 {
	 	 "#operator": "FinalProject",
	 	 "#stats": {
	 	 "#itemsIn": 1,
	 	 "#itemsOut": 1,
	 	 "#phaseSwitches": 11,
	 	 "execTime": "2.201µs",
	 	 "kernTime": "8.570215ms"
	 	 }
	 	 }
]
	 	 }
]
	 	 },
	 	 {
	 	 "#operator": "Limit",
	 	 "#stats": {
	 	 "#itemsIn": 1,
	 	 "#itemsOut": 1,
	 	 "#phaseSwitches": 11,
	 	 "execTime": "3.244µs",
	 	 "kernTime": "8.621338ms"
	 	 },
	 	 "expr": "1"
	 	 }
]
	 	 }
	 	 },
	 	 {
	 	 "#operator": "Stream",
	 	 "#stats": {
	 	 "#itemsIn": 1,
	 	 "#itemsOut": 1,
	 	 "#phaseSwitches": 9,

348

	 	 "execTime": "8.647µs",
	 	 "kernTime": "10.225903ms"
	 	 }
	 	 }
],
	 	 "~versions": [
	 	 "2.0.0-N1QL",
	 	 "5.1.0-1256-enterprise"
]
	 	 }
	 }
	 }

Note that the response now includes a profile section, showing phase information such as

phaseTimes, phaseCounts, phaseOperators (respectively the time spent executing each phase,

the number of documents processed per phase, and the number of operators executing

each phase) - the only information provided when profile is set to phases - as well as an

executionTimings subsection.

From system keyspaces

Queries on system keyspaces can return request profiling information, provided profiling is

turned on for said requests at the time of the query.

Here’s a quick example:

	 cbq> select * from system:active_requests;
	 {
	 "requestID": "7f500733-faba-45dc-8015-3127e305e86e",
	 "signature": {
	 "*": "*"
	 },
	 "results": [
	 {
	 "active_requests": {
	 "elapsedTime": "87.698587ms",
	 "executionTime": "87.651658ms",
	 "node": "127.0.0.1:8091",
	 "phaseCounts": {
	 "primaryScan": 1
	 },
	 "phaseOperators": {
	 "authorize": 1,

349

	 "fetch": 1,
	 "primaryScan": 1
	 },
	 "phaseTimes": {
	 "authorize": "1.406584ms",
	 "fetch": "15.793µs",
	 "instantiate": "50.802µs",
	 "parse": "438.25µs",
	 "plan": "188.113µs",
	 "primaryScan": "75.53238ms"
	 },
	 "remoteAddr": "127.0.0.1:57711",
	 "requestId": "7f500733-faba-45dc-8015-3127e305e86e",
	 "requestTime": "2017-10-09 19:36:04.317448352 +0100 BST",
	 "scanConsistency": "unbounded",
	 "state": "running",
	 "statement": "select * from system:active_requests;",
	 "userAgent": "Go-http-client/1.1 (godbc/2.0.0-N1QL)",
	 "users": "Administrator"
	 }
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "88.016701ms",
	 "executionTime": "87.969113ms",
	 "resultCount": 1,
	 "resultSize": 1220
	 }
	 }

The record for the select on system:active_requests itself is sporting phase information.

If profiling is set to timings, the detailed execution tree is reported as the plan attachment,

accessible via the meta() function:

	 cbq> select *, meta().plan from system:active_requests;
	 {
	 "requestID": "53e3b537-c781-402a-b3ae-49cd4ad4b4ac",
	 "signature": {
	 "*": "*",
	 "plan": "json"

350

	 },
	 "results": [
	 {
	 "active_requests": {
	 "elapsedTime": "58.177768ms",
	 "executionTime": "58.163366ms",
	 "node": "127.0.0.1:8091",
	 "phaseCounts": {
	 "primaryScan": 1
	 },
	 "phaseOperators": {
	 "authorize": 1,
	 "fetch": 1,
	 "primaryScan": 1
	 },
	 "phaseTimes": {
	 "authorize": "674.937µs",
	 "fetch": "8.26µs",
	 "instantiate": "20.294µs",
	 "parse": "985.136µs",
	 "plan": "69.766µs",
	 "primaryScan": "47.460796ms"
	 },
	 "remoteAddr": "127.0.0.1:57817",
	 "requestId": "53e3b537-c781-402a-b3ae-49cd4ad4b4ac",
	 "requestTime": "2017-10-09 19:36:31.374286818 +0100 BST",
	 "scanConsistency": "unbounded",
	 "state": "running",
	 "statement": "select *, meta().plan from system:active_re
	 quests;",
	 "userAgent": "Go-http-client/1.1 (godbc/2.0.0-N1QL)",
	 "users": "Administrator"
	 },
	 "plan": {
	 "#operator": "Sequence",
	 "#stats": {
	 "#phaseSwitches": 1,
	 "execTime": "818ns",
	 "kernTime": "57.105844ms",
	 "state": "kernel"
	 },

351

	 "~children": [
	 {
	 "#operator": "Authorize",
	 "#stats": {
	 "#phaseSwitches": 3,
	 "execTime": "3.687µs",
	 "kernTime": "56.428974ms",
	 "servTime": "671.25µs",
	 "state": "kernel"
	 },
	 "privileges": {
	 "List": [
	 {
	 "Priv": 4,
	 "Target": "#system:active_requests"
	 }
]
	 },
	 "~child": {
	 "#operator": "Sequence",
	 "#stats": {
	 "#phaseSwitches": 1,
	 "execTime": "1.35µs",
	 "kernTime": "56.439225ms",
	 "state": "kernel"
	 },
	 "~children": [
	 {
	 "#operator": "PrimaryScan",
	 "#stats": {
	 "#itemsOut": 1,
	 "#phaseSwitches": 7,
	 "execTime": "19.430376ms",
	 "kernTime": "2.821µs",
	 "servTime": "28.03042ms"
	 },
	 "index": "#primary",
	 "keyspace": "active_requests",
	 "namespace": "#system",
	 "using": "system"
	 },

352

	 {
	 "#operator": "Fetch",
	 "#stats": {
	 "#itemsIn": 1,
	 "#phaseSwitches": 7,
	 "execTime": "8.26µs",
	 "kernTime": "47.474703ms",
	 "servTime": "8.946656ms",
	 "state": "services"
	 },
	 "keyspace": "active_requests",
	 "namespace": "#system"
	 },
	 {
	 "#operator": "Sequence",
	 "#stats": {
	 "#phaseSwitches": 1,
	 "execTime": "638ns",
	 "kernTime": "56.466039ms",
	 "state": "kernel"
	 },
	 "~children": [
	 {
	 "#operator": "InitialProject",
	 "#stats": {
	 "#phaseSwitches": 1,
	 "execTime": "1.402µs",
	 "kernTime": "56.471719ms",
	 "state": "kernel"
	 },
	 "result_terms": [
	 {
	 "expr": "self",
	 "star": true
	 },
	 {
	 "expr": "(meta('active_re
	 quests').'plan')"
	 }
]
	 },

353

	 {
	 "#operator": "FinalProject",
	 "#stats": {
	 "#phaseSwitches": 1,
	 "execTime": "1.105µs",
	 "kernTime": "56.49816ms",
	 "state": "kernel"
	 }
	 }
]
	 }
]
	 }
	 },
	 {
	 "#operator": "Stream",
	 "#stats": {
	 "#phaseSwitches": 1,
	 "execTime": "366ns",
	 "kernTime": "57.250988ms",
	 "state": "kernel"
	 }
	 }
],
	 "~versions": [
	 "2.0.0-N1QL",
	 "5.1.0-1256-enterprise"
]
	 }
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "59.151099ms",
	 "executionTime": "59.136024ms",
	 "resultCount": 1,
	 "resultSize": 6921
	 }
	 }

354

The information shown here in system:active_requests is also accessible from

system:completed_requests, assuming that the request in question, on completion, qualifies for

storage in system:completed_requests and profiling was turned on.

Note that the timing information returned by system:active_requests is current, meaning that it

includes the execution timings accrued up to now: a second select on system:active_requests

can therefore be used to determine the cost of a particular operator in the interval of time

elapsed between the two selects.

Information provided

As shown in the following example

	 {
	 "#operator": "Fetch",
	 "#stats": {
	 "#itemsIn": 1,
	 "#phaseSwitches": 7,
	 "execTime": "8.26µs",
	 "kernTime": "47.474703ms",
	 "servTime": "8.946656ms",
	 "state": "services"
	 },
	 "keyspace": "active_requests",
	 "namespace": "#system"
	 }

The execution tree document reports, for each operator, the number of documents ingested

and digested (#itemsIn and #itemsOut), time spent executing operator code (execTime), waiting

to be scheduled (kernTime) and waiting for services to supply data (servTime), the number of

times the operator has changed state (executing, waiting to be scheduled, waiting for data), and

the current state (assuming that the request has not already completed).

The operator statistics are purposely very detailed in nature: each individual measure has

been known to stand out prominently during specific performance investigations, and I am not

ashamed to say that they have also been gainfully used during my own debugging sessions!

To give a feeling of the sort of things that can be achieved, let’s consider phaseSwitches.

Suppose that, after gathering profiles twice, the number of phaseSwitches for a particular

operator has not increased.

That particular operator may not be operating correctly: should the state be stuck in "services",

then depending on the operator, it may be waiting on the document store (for a Fetch), or the

indexing service (for a Scan).

355

Maybe the relevant service is down or stuck?

Conversely, if stuck in "kernel", then maybe a consumer down the pipeline is not accepting

data, or the machine might be so loaded that the scheduler is not actually finding time slices for

the operator.

The next section will cover some tell tale signs of some common scenarios, most likely

scenarios first.

Interpreting profiles

Any operator: high kernel time

This is a bottleneck in an operator further down the pipeline.

Look for an operator with high execution or services time.

If one can’t be found, the runtime kernel is struggling to schedule operators: the query node is

overloaded and adding a new one might come handy.

Fetches, Joins, Scans: high service times

This may indicate a stressed outside service.

A confirmation of this would come from a low rate of change in #itemsOut, although this

requires taking the same profile more than once, which may be inconvenient (or impossible, if

the request has already completed).

As an alternative, look for the symptoms described next.

Fetches and Joins: high service time per incoming document

Individual document fetches should be fast.

Dividing servTime by '#itemsOut' should always yield Fetch times of substantially less than a

millisecond.

If it isn’t, then the document store is under stress.

To be clear - it isn’t necessarily the request being profiled that’s putting the store under stress:

more likely than not it is the overall load on the service that’s being the issue.

One way to ascertain that overall load is the issue, at least, while performing stress tests, is just

to reduce the number of worker clients: on an overloaded store, individual fetch times stay

constant as the number of clients goes down, and only start to improve when the load gets to

level that can be more easily handled.

356

Fetches: high number of documents ingested

A good query plan should use an index that produces only the document keys that are relevant

for the request.

If the number of keys passed to the Fetch operator is much more than the final number of

documents returned to the client, the index chosen in not selective enough.

Scans: high number of document produced

This is the counterpart of the previous symptom: the index chosen in not selective enough.

Consider creating an index so additional predicates can be pushed to the index scan.

Joins: low ingested documents, high documents produced

Again, definitely a wrong index path: is the join supposed to produce so many results in the first

place?

Filters: high ingested documents, low documents produced

Another "index chosen definitely not selective enough" indicator.

Filters: high execution time

This should never happen, and if it does, it’s more likely than not accompanied by the previous

symptom.

Not only was the index not selective enough and returning too many document keys, but

evaluating all the expressions in the where clause for so many documents is proving to be rather

expensive!

Projection: high execution time

Again, an unlikely one: the query service is struggling to assemble the result documents for the

request.

How many terms do you have in the SELECT statement’s projection clause? Shave a few!

Do you have complex expressions?

Stream: high execution time

The request is struggling to convert the result in JSON form and send it to the client.

The pretty REST parameter may have been set to true in error.

The projection list may have too many terms.

357

Alternatively, there is a network problem, or the result documents being sent are way too large

for the network to cope.

Controls

Many times, request behaviour is dependent on placeholder values, therefore it would be very

useful to capture placeholder values alongside profiles.

This can be done with the controls query REST API, command line parameter and /admin/
settings REST endpoint, which takes a true or false value.

Its behaviour is exactly the same as the profile setting, and can be set on a per request basis, at

start up, on the fly, service wide - this too being retrospectively applied to running requests that

hadn’t specified a setting.

Named and positional parameters will be reported in the request output in their own control

section:

	 cbq> \set -controls true;
	 cbq> \set -$a 1;
	 cbq> select * from default where a = $a;
	 {
	 "requestID": "bf6532d6-f009-4e55-b333-90e0b1d17283",
	 "signature": {
	 "*": "*"
	 },
	 "results": [
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "9.864639ms",
	 "executionTime": "9.853572ms",
	 "resultCount": 0,
	 "resultSize": 0
	 },
	 "controls": {
	 "namedArgs": {
	 	 "a": 1
	 	 }
	 }
	 }

as well as in system keyspaces (although, unlike profiles, there’s no need to access any

attachment via the meta() function):

358

	 cbq> select * from system:active_requests;
	 {
	 "requestID": "dced4ef6-7a31-4291-a15d-030ac67b033c",
	 "signature": {
	 "*": "*"
	 },
	 "results": [
	 {
	 "active_requests": {
	 "elapsedTime": "69.458652ms",
	 "executionTime": "69.434706ms",
	 "namedArgs": {
	 "a": 1
	 },
	 "node": "127.0.0.1:8091",
	 "phaseCounts": {
	 "primaryScan": 1
	 },
	 "phaseOperators": {
	 "authorize": 1,
	 "fetch": 1,
	 "primaryScan": 1
	 },
	 "remoteAddr": "127.0.0.1:63095",
	 "requestId": "dced4ef6-7a31-4291-a15d-030ac67b033c",
	 "requestTime": "2017-10-09 20:51:33.400550619 +0100 BST",
	 "scanConsistency": "unbounded",
	 "state": "running",
	 "statement": "select * from system:active_requests;",
	 "userAgent": "Go-http-client/1.1 (godbc/2.0.0-N1QL)",
	 "users": "Administrator"
	 }
	 }
],
	 "status": "success",
	 "metrics": {
	 "elapsedTime": "69.62242ms",
	 "executionTime": "69.597934ms",
	 "resultCount": 1,
	 "resultSize": 977
	 }
	 }

359

Visual profiles

A rather easy way to access detailed profiling information for individual statements, without

having to do anything special, is through the Query tab in the Admin Console UI.

Query WorkBench turns profiling on by default, and upon completion of the request, timings

and document counts are readily available in pictorial form, by clicking on the "plan" button.

The operators are neatly colour coded by cost, and hovering over individual operators will result

in copious amounts of raw timings popping up.

The Preferences allows to change profiling settings, as well as other settings such as named and

positional parameters.

Profiling is much more than just profiling

Profile and controls information can be used for more detailed monitoring as well.

For instance, to find requests with any operator producing excessive amounts of documents,

one could use

	 select * from system:active_requests
	 where any o within meta().plan satisfies o.'#itemsOut' > 100000 end;

(change the threshold for output documents as required).

360

The example is quite simplistic, and could actually be more easily done using phaseCounts, but

switch the ANY clause to satisfying

	 o.'#operator' = "Fetch" and

	 o.keyspace = "travel-sample" and

	 o.'#stats'.'#itemsOut' > 100000

and presto!, the requests loading a specific keyspace are revealed.

Similarly, finding any request that used a specific value for any named parameter can be

achieved with

	 select * from system:active_requests
	 where namedArgs.'some parameter' = "target value";

(substitute "some parameter" and "target value" with the required values!)

The possibilities are endless.

One last consideration

Profiling information is held in the execution tree itself, which does use a fair amount of memory.

This in itself is not a problem, however, be mindful that when a slow running request becomes

eligible for storage in system:completed_requests and profile is set to timings, the whole

execution tree will be stored as well.

This, again, is not a problem in itself. It may become a problem, though, if system:completed_
requests is set to log all requests, it has no limit, and all requests have profile set to timings:

in this case, memory usage may grow beyond what is reasonable, because you are storing all

timings for all requests ever executed since the beginning of time!

Happily, the default settings for system:completed_requests logging mean that you will not

unknowingly land into trouble, and, anyway, I am not suggesting you should be thrifty with the

amount of timings you log, but this is a case in which excess may be painful.

You have been warned.

Conclusions

Starting from Couchbase Server version 5.0, N1QL offers specialised tools to slice and dice

execution timings in considerable depth.

Examples have been given on how to access the functionality and interpret the data collected.

361

SECURING N1QL ACCESS USING ROLE-BASED
ACCESS CONTROL
Author: Johan Larson

In Couchbase 4.5, data was secured bucket by bucket. Each bucket had a password, and in

order to access a bucket through a N1QL query, the user had to include the bucket password

with the query. Passwordless buckets were possible, but not recommended for production use.

This scheme offered basic protection, but it was very coarse-grained: a user could either do

everything with a bucket, or nothing at all. Also, queries accessing many buckets required

passing in a password for every bucket, which was inconvenient, particularly if passwords

changed.

To allow our users to avoid these problems, we introduced role-based access control (RBAC) in

Couchbase Server 5.0. Access to data is now controlled through fine-grained roles on buckets,

and every user can be assigned roles that fit what they should actually be doing in the database.

In this article I will walk you through the main functionality offered by RBAC in Couchbase

Server 5.0. Hands-on exercises will let you try out the new features for yourself.

Setup

For the hands-on exercises, you will need to install Couchbase Server 5.0, Enterprise Edition.

During installation, configure it to have an administrator named "Administrator" with password

"password". This is not recommended practice in a production environment, of course.

Log in to the administration console (at http://localhost:8091) and go to the Buckets screen.

There create two buckets, "testbucket1" and "testbucket2", each with a memory quota of 100

MB to avoid running out of memory.

Then go to the Query screen and create primary indexes on the two buckets you have just

created. The primary indexes let you run queries on the buckets.

	 CREATE PRIMARY INDEX ON testbucket1
	 CREATE PRIMARY INDEX ON testbucket2

You can go the Indexes screen to verify that the indexes were actually created. Both will be

named "#primary".

https://www.couchbase.com/downloads

362

Main Roles

There are four main roles that control who can execute what N1QL queries. The roles query_

select, query_insert, query_update, and query_delete each let you execute N1QL queries of the

corresponding type. There are also three more specialized roles (query_manage_index, query_

system_catalog, and query_external_access) that will be covered in the next section, Important

Additional Roles.

But there’s more to it. These roles are parameterized by the bucket they apply to. A user

can’t just have role query_select; we need to know what bucket the role is on, such as query_

select[testbucket1], which lets the user run a SELECT query against testbucket1. It is also

possible to have this role on all buckets, indicated by query_select[*].

To try this yourself, go into the Couchbase console and in the Security screen create a new user

user1 with password "password" and role query_select[testbucket1].

The role is found under "Query Roles" in the user creation menu.

363

Then do the same for "user2", but give that user query_select[testbucket2].

Now let’s try running a query against these buckets using the roles. I’ll use the CBQ shell tool

that comes with Couchbase.

	 cbq -e http://localhost:8093/ -s "select * from testbucket1"

That get us this response:

	 {
	 "requestID": "d838da35-24a3-415e-b9e1-69ac02a9820b",
	 "signature": {"*":"*"},
	 "results": [
],
	 "errors": [{"code":13014,"msg":"User does not have credentials to run SELECT
	 queries on the testbucket1 bucket. Add role query_select on testbucket1 to allow
	 the query to run."}],
	 "status": "stopped",
	 "metrics": {"elapsedTime": "4.214692ms","executionTime": "4.190101ms","result
	 Count": 0,"resultSize": 0,"errorCount": 1}
	 }

364

Notice that the error tells us very clearly what role we are lacking. Let’s try again with user1, who

has the correct role:

	 cbq -e http://localhost:8093/ -s "select * from testbucket1" -u user1 -p
	 password

That worked:

	 {
	 "requestID": "caeba7de-d9eb-4e2f-8f67-d6e795fb1dbd",
	 "signature": {"*":"*"},
	 "results": [
],
	 "status": "success",
	 "metrics": {"elapsedTime": "11.501861ms","executionTime": "11.471201ms","result
	 Count": 0,"resultSize": 0}
	 }

Try the query yourself with user2, who has the right role but on the wrong bucket. The request

will fail.

Now let’s try a more complex query that touches two buckets. Start by running this query:

	 cbq -e http://localhost:8093/ -s "INSERT INTO testbucket2 (KEY source.c_id,
	 VALUE source.customer) SELECT * FROM testbucket1 source WHERE source.new = true"

The system tells us it needs role query_insert[testbucket2]:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run INSERT
	 queries on the testbucket2 bucket. Add role query_insert on testbucket2 to allow
	 the query to run."}],

Create a new user "user3" with the required role, and try again:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run SELECT
	 queries on the testbucket1 bucket. Add role query_select on testbucket1 to allow
	 the query to run."}],

We are still getting an error, but it is a different error than before. The query we are trying to

run has two parts; it selects from testbucket1 and inserts into testbucket2. We have provided

enough credentials for the insertion but not for the selection. Go into the console, add query_

select[testbucket2] to user3 and try again. This time the query works.

365

	 {
	 "requestID": "3c313c29-8b67-4e63-92b0-763586345f59",
	 "signature": null,
	 "results": [
],
	 "status": "success",
	 "metrics": {"elapsedTime": "11.451689ms","executionTime": "11.415157ms","result
	 Count": 0,"resultSize": 0}
	 }

Let’s try one more thing. Add a RETURNING clause to the query and try to execute it:

	 cbq -e http://localhost:8093/ -s "INSERT INTO testbucket2 (KEY source.c_id,
	 VALUE source.customer) SELECT * FROM testbucket1 source WHERE source.new = true
	 RETURNING meta().id id" -u user3 -p password

This fails:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run SELECT
	 queries on the testbucket2 bucket. Add role query_select on testbucket2 to allow
	 the query to run."}],

What’s going on here is that the RETURNING clause is being treated as a SELECT on the bucket

we inserted into (testbucket2), occurring just after the insertion. The user does not have the

query_select[testbucket2] role and is therefore being refused.

Add role query_select[testbucket2] to user3 and rerun the query. It will now work.

Important Additional Roles

There are three more roles you should know when working with N1QL.

query_manage_index

First, let’s try to create an index:

	 cbq -e http://localhost:8093/ -s "CREATE INDEX test_idx ON testbucket1(price)"

That gets us an error:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run index op
	 erations. Add role query_manage_index on testbucket1 to allow the query to
	 run."}],
	 "status": "stopped",

366

The role Query Manage Index on a bucket is necessary for creating, deleting, or building indexes

on that bucket.

Create a new user "user4" with role query_manage_index[testbucket1]. Try the index creation

again. The query will now work.

	 cbq -e http://localhost:8093/ -s "CREATE INDEX test_idx ON testbucket1(price)"
	 -u user4 -p password

query_system_catalog

In earlier versions of Couchbase, the system tables were fully accessible to anyone. They are

now more restricted in various ways that will be described later in this document, but there

is a useful role, query_system_catalog, that allows for access to the system tables. This is

particularly useful for staff who need to be able to debug problems with queries or the system,

but shouldn’t be given full administrator privileges.

If we query system:keyspaces as administrator, we see both of the bucket we have created in

the system:

	 cbq -e http://localhost:8093/ -s "SELECT * FROM system:keyspaces" -u Administra
	 tor -p password

	 {
	 "requestID": "46ee066e-25f6-4bef-a70a-553f4c224c39",
	 "signature": {"*":"*"},
	 "results": [
	 {"keyspaces":{"datastore_id":"http://127.0.0.1:8091","id":"testbuck
	 et2","name":"testbucket2","namespace_id":"default"}},
	 {"keyspaces":{"datastore_id":"http://127.0.0.1:8091","id":"testbuck
	 et1","name":"testbucket1","namespace_id":"default"}}
],
	 "status": "success",
	 "metrics": {"elapsedTime": "16.562026ms","executionTime": "16.52656ms","result
	 Count": 2,"resultSize": 238}
	 }

But if we run the same query without credentials, the results are filtered out:

	 {
	 "requestID": "932e6b73-3058-4877-8da1-1715b16e53f5",
	 "signature": {"*":"*"},
	 "results": [
],

367

	 "warnings": [{"code":11011,"msg":"One or more documents were excluded from the
	 system:keyspaces bucket because of insufficient user permissions."}],
	 "status": "success",
	 "metrics": {"elapsedTime": "20.563024ms","executionTime": "20.532213ms","result
	 Count": 0,"resultSize": 0,"warningCount": 1}
	 }

Create a new user "user5" with role query_system_catalog, and rerun the query. You will see the

same results as when we ran the query as Administrator.

Query_external_access

The new CURL() function makes it possible to query REST services from within N1QL. To use

the function, we need to do some configuration, and run the query using the new role query_

external_access.

Let’s try the query first:

	 cbq -e http://localhost:8093/query/service -s 'SELECT CURL("https://maps.
	 googleapis.com/maps/api/geocode/json", {"data":"address=Half+Moon+Bay",
	 "get":true}) GEO'

The query is refused because appropriate permissions are not supplied:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run que
	 ries using the CURL() function. Add role query_external_access to allow the
	 query to run."}],

Create a user "user6" with role query_external_access and rerun the query using that user. This

time the query refuses to run because we have not enabled CURL(); for security reasons it is

disabled by default.

Create a file "curl_whitelist.json" with the following contents:

{"all_access":true}

Place it under the couchbase directory. On a Mac, the exact location is "/Applications/

Couchbase Server.app/Contents/Resources/couchbase-core/var/lib/couchbase/n1qlcerts/curl_

whitelist.json". On other systems, the location is slightly different. Try the query again, which

should run correctly, downloading data like this:

	 "address_components" : [
	 {
	 "long_name" : "Half Moon Bay",
	 "short_name" : "Half Moon Bay",

https://developer.couchbase.com/documentation/server/3.x/admin/Misc/install-location.html

368

Role Permits GRANT Syntax

Query Select SELECT Statements GRANT select ON testbucket TO myuser

Query Insert INSERT Statements GRANT insert ON testbucket TO myuser

Query Update UPDATE Statements GRANT update ON testbucket TO

myuser

Query Delete DELETE Statements GRANT delete ON testbucket to myuser

Query System Catalog Access to system keyspaces GRANT query_system_catalog TO

myuser

Query Manage Index Index Operations GRANT query_manage_index ON

testbucket TO myuser

Query External Access CURL() Function GRANT query_external_access TO

myuser

	 "types" : ["locality", "political"]
	 },
	 {
	 "long_name" : "San Mateo County",
	 "short_name" : "San Mateo County",
	 "types" : ["administrative_area_level_2", "political"]
	 },
	 {
	 "long_name" : "California",
	 "short_name" : "CA",
	 "types" : ["administrative_area_level_1", "political"]
	 },
	 {
	 "long_name" : "United States",
	 "short_name" : "US",
	 "types" : ["country", "political"]
	 }

The full list of N1QL roles is as follows:

369

EXPLAIN and PREPARE

Of course, we can do things with queries other than just running them. We can use EXPLAIN

to understand how the query engine computes a query. And we can use PREPARE to set up a

query for repeated execution.

In Couchbase 5.0, the permissions for EXPLAIN and PREPARE are simple. They are the same as

the permissions required for the underlying statement. That’s all there is to it.

To test this, let’s try to EXPLAIN a simple SELECT statement, the same one we used in the

earlier "Primary Roles" section:

	 cbq -e http://localhost:8093/ -s "explain select * from testbucket1"

In response we get an error message asking for a specific role:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run SELECT
	 queries on the testbucket1 bucket. Add role query_select on testbucket1 to allow
	 the query to run."}],

Let’s provide a user with that role:

	 cbq -e http://localhost:8093/ -s "explain select * from testbucket1" -u user1 -p password

Success, just as we saw for the statement itself back in "Primary Roles".

Now let’s try to PREPARE the second statement from "Primary Roles":

	 cbq -e http://localhost:8093/ -s "PREPARE INSERT INTO testbucket2 (KEY source.c_
	 id, VALUE source.customer) SELECT * FROM testbucket1 source WHERE source.new =
	 true"

We get the same error message we originally got for the statement itself:

	 "errors": [{"code":13014,"msg":"User does not have credentials to run INSERT
	 queries on the testbucket2 bucket. Add role query_insert on testbucket2 to allow
	 the query to run."}],

And if we add a user with credentials for the SELECT and INSERT, the PREPARE succeeds:

	 cbq -e http://localhost:8093/ -s "PREPARE INSERT INTO testbucket2 (KEY source.c_
	 id, VALUE source.customer) SELECT * FROM testbucket1 source WHERE source.new =
	 true" -u user3 -p password

370

GRANT and REVOKE

In 5.0, N1QL includes statements for giving users roles (GRANT) and for taking them away

(REVOKE). These statements require Administrator permission to run.

Before trying out these statements, let’s review what users are configured and what roles they

have. Here is what you should see in the Security screen of the Couchbase console.

We can grant a new role cluster_admin to user1 like this:

	 cbq -e http://localhost:8093/ -s "grant cluster_admin to user1" -u Administrator
	 -p password

This will succeed, and shortly thereafter the Couchbase console will update to reflect the new

role assignment.

We can also assign parameterized roles, like this:

	 cbq -e http://localhost:8093/ -s "grant query_insert on testbucket2 to user2" -u
	 Administrator -p password

We can undo the initial grant by a REVOKE:

	 cbq -e http://localhost:8093/ -s "revoke cluster_admin from user1" -u Adminis
	 trator -p password

All of these parameters can take lists of arguments:

	 cbq -e http://localhost:8093/ -s "grant query_insert, query_delete on test
	 bucket1, testbucket2 to user5, user6" -u Administrator -p password

371

And finally, the query_ prefix is optional for query_insert, query_update, query_delete, and

query_select, making some of the syntax more familiar:

	 cbq -e http://localhost:8093/ -s "grant insert,delete on testbucket1 to user4"
	 -u Administrator -p password

Comparison with Oracle

Role-based access control in Couchbase 5.0 has been designed to be familiar to professionals

who have used access control in other current database systems. By now, you should have

recognized familiar concepts such as insert/select/update/delete permissions being applicable

to buckets, which are sort of like tables. Also, the notion of administrator users with broad

permissions should be familiar.

For example, this GRANT query will work on both Couchbase and Oracle:

	 GRANT select, insert ON default TO jlarson, pedwards

One conceptual difference between Couchbase and other systems such as Oracle is that we

have a binary model of privilege: users and roles. They typically have a trinary model, with users,

roles, and privileges. Accordingly, giving users permissions in Oracle is about granting privileges

on objects to users. In Couchbase, it’s about granting parameterized roles to users.

Roles are static in 5.0. There is no equivalent of statements to CREATE/DROP/ALTER ROLE.

Couchbase permissions are either on the system as a whole or on buckets. We have no notion

of permissions on tables, columns, or collections.

In Couchbase GRANT and REVOKE are only possible by Admin users. There is no such thing

as an ADMIN OPTION or a GRANT OPTION. Changing permissions requires you to be an

Administrator.

Finally, we have no equivalent of SET ROLE. SET ROLE is a session-level command, which

makes no sense in Couchbase because we have no sessions, only individual RESTful requests.

New System Keyspaces

Couchbase 5.0 introduces three new system keyspaces related to users. The first of these is

system:user_info. This keyspace lists the users configured in the system, including their roles.

Let’s try a query:

	 cbq -e http://localhost:8093/ -s "select * from system:user_info" -u Administra
	 tor -p password

372

That gets us seven entries like this, one for every user we have set up, plus the configured

Administrator:

	 {"user_info":{"domain":"local","id":"user4","name":"User4","roles":[{"bu
	 cket_name":"testbucket1","role":"query_manage_index"},{"bucket_name":"testbuck
	 et1","role":"insert"},{"bucket_name":"testbucket1","role":"delete"}]}},
	 {"user_info":{"domain":"local","id":"user2","name":"User 2","roles":[{"bucket_
	 name":"testbucket2","role":"select"},{"bucket_name":"testbucket2","role":"in
	 sert"}]}},
	 {"user_info":{"domain":"local","id":"user5","name":"User5","roles":[{"buc
	 ket_name":"testbucket2","role":"insert"},{"bucket_name":"testbuck
	 et1","role":"insert"},{"bucket_name":"testbucket2","role":"delete"},{"bucket_
	 name":"testbucket1","role":"delete"},{"role":"query_system_catalog"}]}},

The system:applicable_roles keyspace is similar, but breaks up each user role into a separate

entry, producing a more relational view of the data:

	 cbq -e http://localhost:8093/ -s "select * from system:applicable_roles where
	 grantee = 'user3'" -u Administrator -p password

	 "results": [
	 {"applicable_roles":{"bucket_name":"testbucket2","grantee":"user3","role":"se
	 lect"}},
	 {"applicable_roles":{"bucket_name":"testbucket1","grantee":"user3","role":"se
	 lect"}},
	 {"applicable_roles":{"bucket_name":"testbucket2","grantee":"user3","role":"in
	 sert"}}
],

Finally, the system:my_user_info keyspace shows the portion of system:my_user_info

corresponding to the user whose credentials are passed in with the query.

	 cbq -e http://localhost:8093/ -s "select * from system:my_user_info" -u user3 -p
	 password

	 "results": [
	 {"my_user_info":{"domain":"local","id":"user3","name":"User
	 3","roles":[{"bucket_name":"testbucket2","role":"select"},{"bucket_name":"test
	 bucket1","role":"select"},{"bucket_name":"testbucket2","role":"insert"}]}}
],

373

Access to System Keyspaces

In keeping with a general philosophy of secure operation, system keyspaces (buckets) are

secured in version 5.0. The degree of restriction varies based on the data present in each

keyspace.

Three keyspaces have nothing that is likely to be valuable to an attacker:

•	 system:datastores

•	 system:namespaces

•	 system:dual

Accordingly, these keyspaces are not secured. No credentials are needed to access them.

	 cbq -e http://localhost:8093/query/service -s "select * from system:datastores"

	 "results": [
	 {"datastores":{"id":"http://127.0.0.1:8091","url":"http://127.0.0.1:8091"}}
],

At the other end of security are system:user_info and system:applicable_roles, which contain

the list of users and their roles. These are accessible only by Admin and Read Only Admin users.

The system:my_user_info table is similar, but only shows the relevant information for the user

whose credentials are presented with the query. We have already explored these tables, above.

The next four system keyspaces contain a variety of runtime and configuration information.

•	 System:prepareds

•	 System:completed_requests

•	 System:active_requests

•	 System:nodes

Since the information in them is not as sensitive as user information, they are more widely

viewable. They can be accessed by most admins, even minor ones: Admin, Read Only Admin,

Cluster Admin, Query System Catalog, Replication Admin, Bucket Admin(any bucket), or Views

Admin(any bucket).

Let’s try looking at system:prepareds as user5, the user we created with Query System Catalog

permission, above.

	 cbq -e http://localhost:8093/ -s "select * from system:prepareds" -u user5 -p
	 password

This shows us one prepared statement that we created earlier.

374

The system:keyspaces keyspace shows the list of buckets configured in the system. This

information is somewhat sensitive, since it gives an attacker information about what a system is

used for. Accordingly, users with high-level roles (Admin, Read Only Admin, Cluster Admin) see

everything in this keyspace. Users with the Query System Catalog role also see everything, since

this role is intended for debugging query problems. For other users, the view is filtered; the user

sees only those keyspaces for which they have query_select permission.

For example, a query against system:keyspaces with no credentials will succeed but will show

no entries:

	 cbq -e http://localhost:8093/ -s "select * from system:keyspaces"

	 "results": [
],

Add credentials for user5, who has the Query System Catalog role, and all entries are shown:

	 cbq -e http://localhost:8093/ -s "select * from system:keyspaces" -u user5 -p
	 password

	 "results": [
	 {"keyspaces":{"datastore_id":"http://127.0.0.1:8091","id":"testbuck
	 et1","name":"testbucket1","namespace_id":"default"}},
	 {"keyspaces":{"datastore_id":"http://127.0.0.1:8091","id":"testbuck
	 et2","name":"testbucket2","namespace_id":"default"}}
],

Use credentials for user1, who has only query_select[testbucket1], and you’ll see only the entry

for testbucket1.

	 cbq -e http://localhost:8093/ -s "select * from system:keyspaces" -u user1 -p
	 password

	 "results": [
	 {"keyspaces":{"datastore_id":"http://127.0.0.1:8091","id":"testbuck
	 et1","name":"testbucket1","namespace_id":"default"}}
],

The system:indexes keyspace is handled much like system:keyspaces: high-level roles allow

complete access, while the query_select role allows filtered access. The real difference is that

the query_manage_index role allows filtered access, like query_select.

375

Protection for Admin APIs

The N1QL query engine has RESTful APIs corresponding to three of the system keyspaces:

system:prepareds, system:completed_requests, and system:active_requests. These used to

be open in Couchbase 4.6, but are now secured. They require the same credentials as the the

keyspaces do.

	 curl http://localhost:8093/admin/prepareds

	 {"caller":"auth:268","code":13014,"key":"datastore.couchbase.insufficient_cre
	 dentiasl","message":"User does not have credentials to run queries accessing the
	 system tables. Add role query_system_catalog to allow the query to run."}

If we try again with user5, who has the required role, it works.

	 curl http://localhost:8093/admin/prepareds -u user5:password

Access to Migrated Passwordless Buckets

When migrating from 4.6 to 5.0, it is useful to preserve existing permissions patterns, to allow

legacy applications to keep working as they did before. This is a bit tricky in this case, because

in 4.6 access was controlled using passwords on buckets themselves, whereas in 5.0 access

control is based on users with various roles.

To preserve legacy access patterns, during the upgrade process we create users with names

and passwords matching the original bucket. This lets existing applications keep doing what

they were doing, even in the case of access without any password at all.

Seeing this in action is going to take some work. Get comfortable.

Begin by installing Couchbase 4.6. Then create two buckets, "openbucket" with no password

and "closedbucket" with password "password".

Go to the Query tab and add primary indexes for both buckets to allow N1QL queries to run.

	 create primary index on openbucket

	 create primary index on closedbucket

Verify that openbucket can be queried without a password:

	 cbq -e http://localhost:8093/ -s "select * from openbucket"

But querying closedbucket without a password fails:

	 cbq -e http://localhost:8093/ -s "select * from closedbucket"

376

But closedbucket can be queried with a password:

	 cbq -e http://localhost:8093/ -s "select * from closedbucket" -u closedbucket -p
	 password

This is the pattern of access we want to preserve as we upgrade to 5.0.

Now shut down Couchbase, and upgrade to 5.0, while preserving the underlying data we have

just created.

Then go to the Security screen of the Couchbase console. There you will see two new users

created by the upgrade process.

The "closedbucket" user has the same name as the "closedbucket" bucket and the password

that was assigned to the bucket in 4.6. It allows us to preserve legacy access to closedbucket.

The "openbucket" user does the same, but for openbucket.

Let’s check that the earlier access pattern still works.

	 cbq -e http://localhost:8093/ -s "select * from openbucket"

Openbucket is still accessible without a password.

	 cbq -e http://localhost:8093/ -s "select * from closedbucket"

Closedbucket access fails without a password.

	 cbq -e http://localhost:8093/ -s "select * from closedbucket" -u closedbucket -p
	 password

But closedbucket access succeeds with a password.

Hurray! Things work as they did before. Go fix yourself a treat.

377

Summary

•	 Access control in in Couchbase 4.6 was using passwords for buckets. In 5.0 it is using

roles assigned to users.

•	 The primary roles used to control a user’s access to N1QL are query_select/query_insert/

query_update/query_delete. All of them are parameterized by bucket.

•	 Important more specialized roles include query_manage_index, query_system_catalog,

and query_external_access.

•	 Explaining or preparing a query requires the same roles as executing it would.

•	 There are new statements that let you GRANT and REVOKE roles.

•	 The system of roles should be familiar to users familiar with other major databases. The

main difference is that Couchbase has no notion of permissions outside of roles.

•	 There are new system keyspaces for querying users and the roles assigned to them.

•	 System keyspaces are controlled for security. The behavior varies from keyspace to

keyspace depending on the sensitivity of the data therein.

•	 Existing access patterns, even for passwordless buckets, should still work after migration

from 4.6 to 5.0.

378

Migration and
Competition

380

381

ELT PROCESSING WITH COUCHBASE AND N1QL
Author: Manuel Hurtado

Moving data between data sources is one of the key activities in data integration projects.

Traditionally, techniques around data movement have been part of Data Warehouse, BI,

and analytics. More recently, Big Data, Data Lakes, and Hadoop, have been frequent players

in this area.

In this entry, we'll discuss how Couchbase's N1QL language can be used to make massive

manipulation on the data in this kind of scenarios.

First, let us remember the two classical approaches when doing data movement:

ETL (Extract-Transform-Load): With this model, the data is extracted (from the original data

source), transformed (data is reformatted to fit in the target system), and loaded (in the target

data store).

ELT (Extract-Load-Transform): With this model, the data is extracted (from the original data

source), then loaded in the same format in the target system. Then, we do a transformation in

the target system to obtain the desired data format.

We will focus on an ELT exercise in this example. Let's do a simple export from a relational

database and load the data into Couchbase. We will use Oracle Database as our input data

source, with the classical HR schema example built in, which models a Human Resources

department.

This is the source data model:

382

In the first step, we will load the data with the same structure. There is a free tool you can use

to perform this initial migration here. At the end, we will have JSON documents mapping this

table model:

https://github.com/mahurtado/oracle2couchbase

383

For example, a location document will look like this:

 {
 "street_address": "2017 Shinjuku-ku",
 "city": "Tokyo",
 "state_province": "Tokyo Prefecture",
 "postal_code": "1689",
 "type": "locations",
 "location_id": 1200,
 "country_id": "JP"
 }

This was an easy first step. However, this mapping table-to-document is often a sign of bad

design in the NoSQL world. In NoSQL, it's common to de-normalize your data in favor of a more

direct access path, embedding referenced data. The goal is to minimize database interactions

and joins, looking for the best performance.

Let's assume that our use case is driven by a frequent access to the whole job history for

employees. We decide to change our design to this one:

384

For locations, we are joining in a single location document the referenced data for both country

and region.

For the employee document, we will embed the department data and include an array with the

whole job history for each employee. This array support in JSON is a good improvement over

foreign key references and joins in the relational world.

For the job document, we will maintain the original table structure.

Now that we have extracted and loaded the data, we will transform into this model to finish our

ELT example. How can we do this job? It's time for N1QL!

N1QL is the SQL-like language included with Couchbase for data access and manipulation. In

this example, we will use two buckets: HR, which maps to the original Oracle HR schema, and

HR_DNORM, which will hold our target document model.

We have already loaded our HR schema. The next step is to create a bucket named HR_DNORM.

Then, we will create a primary index in this new bucket:

 CREATE PRIMARY INDEX ON HR_DNORM

Now it is time to create the location documents. These documents are composed of original

locations, country, and region documents:

 INSERT INTO HR_DNORM (key _k, value _v)
 SELECT meta().id _k,

 {
 "type":"location",
 "city":loc.city,
 "postal_code":loc.postal_code,
 "state_province":IFNULL(loc.state_province, null),
 "street_address":loc.street_address,
 "country_name":ct.country_name,
 "region_name":rg.region_name
 } as _v
 FROM HR loc
 JOIN HR ct ON KEYS "countries::" || loc.country_id
 JOIN HR rg ON KEYS "regions::" || TO_STRING(ct.region_id)
 WHERE loc.type="locations"

A few things to note:

•	 We are using the projection of a SELECT statement to make the insert. In this example,

the original data comes from a different bucket.

•	 JOINs are used in the original bucket to reference countries and regions.

385

•	 The IFNULL function used to set explicitly null values for the field state_province.

•	 The TO_STRING function applied on a number field to reference a key.

Our original sample becomes this:

 {
 "city": "Tokyo",
 "country_name": "Japan",
 "postal_code": "1689",
 "region_name": "Asia",
 "state_province": "Tokyo Prefecture",
 "street_address": "2017 Shinjuku-ku",
 "type": "location"
 }

Note that we got rid of our references location_id and country_id.

Now, it is time for our employee documents. We will do it in several steps. The first one is

to create the employees from the original HR bucket, including department and actual job

information:

 INSERT INTO HR_DNORM (key _k, value _v)
 SELECT meta().id _k,
 {
 "type":"employees",
 "employee_id": emp. employee_id,
 "first_name": emp.first_name,
 "last_name": emp.last_name,
 "phone_number": emp.phone_number,
 "email": emp.email,
 "hire_date": emp.hire_date,
 "salary": emp.salary,
 "commission_pct": IFNULL(emp.commission_pct, null),
 "manager_id": IFNULL(emp.manager_id, null),
 "job_id": emp.job_id,
 "job_title": job.job_title,
 "department" :
 {
 "name" : dpt.department_name,
 "manager_id" : dpt.manager_id,
 "department_id" : dpt.department_id
 }
 } as _v
 FROM HR emp

386

 JOIN HR job ON KEYS "jobs::" || emp.job_id
 JOIN HR dpt ON KEYS "departments::" || TO_STRING(emp.department_id)
 WHERE emp.type="employees" RETURNING META().id;

Second, we will use a temporary construction to build the job history array:

 INSERT INTO HR_DNORM (key _k, value job_history)
 SELECT "job_history::" || TO_STRING(jobh.employee_id) AS _k,
 {
 "jobs" : ARRAY_AGG(
 {
 "start_date": jobh.start_date,
 "end_date": jobh.end_date,
 "job_id": jobh.job_id,
 "department_id": jobh.department_id
 }
)
 } AS job_history
 FROM HR jobh
 WHERE jobh.type="job_history"
 GROUP BY jobh.employee_id
 RETURNING META().id;

Now is easy to update our "employees" documents by adding a job_history array:

 UPDATE HR_DNORM emp
 SET job_history=(
 SELECT RAW jobs
 FROM HR_DNORM jobh
 USE KEYS "job_history::" || SUBSTR(meta(emp).id, 11)
)[0]
 WHERE
 emp.type="employees"
 RETURNING meta().id

This is how our employee document looks:

{
 "commission_pct": null,
 "department": {

387

 "department_id": 10,
 "manager_id": 200,
 "name": "Administration"
 },
 "email": "JWHALEN",
 "employee_id": 200,
 "first_name": "Jennifer",
 "hire_date": "2003-09-16T22:00:00Z",
 "job_history": [
 {
 "department_id": 80,
 "end_date": "2007-12-31T23:00:00Z",
 "job_id": "SA_REP",
 "start_date": "2006-12-31T23:00:00Z"
 },
 {
 "department_id": 90,
 "end_date": "2001-06-16T22:00:00Z",
 "job_id": "AD_ASST",
 "start_date": "1995-09-16T22:00:00Z"
 },
 {
 "department_id": 90,
 "end_date": "2006-12-30T23:00:00Z",
 "job_id": "AC_ACCOUNT",
 "start_date": "2002-06-30T22:00:00Z"
 }
],
 "job_id": "AD_ASST",
 "job_title": "Administration Assistant",
 "last_name": "Whalen",
 "manager_id": 101,
 "phone_number": "515.123.4444",
 "salary": 4400,
 "type": "employees"
}

Note the job_history array of the previous positions.

We can now delete the temporary job_history documents:

 DELETE FROM HR_DNORM emp
 WHERE meta().id LIKE "job_history::%"

388

For our last step, we insert the original jobs documents:

 INSERT INTO HR_DNORM (key _k, value _v)
 SELECT meta().id _k, _v
 FROM HR _v
 WHERE _v.type="jobs"

We are done. This is a simple example, but it shows can powerful N1QL can be for data

manipulation. Happy data migration!

389

MIGRATE FROM ANY RELATIONAL ENGINE TO
COUCHBASE USING N1QL AND SQSL
Author: Marco Greco

Yes, you have read right: I have not misspelled SQL, there is indeed an extra middle "S"!

A quarter of a century ago, when I was in charge of designing and developing the ERP

system at my first employer, people would often come to me and ask to implement a simple

report which would consist at most of a couple of SELECT statements, minimal glue code,

and some formatting.

Simple task, you would think, except that the publishing cycle for the application, considering

the powerful technological means at our disposal (our development machine at the time was an

NCR Tower32 200 with a 5 1/4" 100MB hard disk, 4MB of RAM and AT&T SYSV R2 shipped on a

DC600 cartridge1), would be at the very least 24 hours, if not 48.

Wouldn't it be nice, I said to myself (yes, being a geek can be a very lonely affair!), if I could just

store the SQL and formatting somewhere in the database, and have a scripting language runner

do the rest of the work for me, or, rather, my users?

A few late nights later a prototype implementation had been deployed, with minimal control

syntax, an expansion facility, and formatting capabilities. The Structured Query Scripting

Language was born.

People have a nasty habit of changing employers, and I was no different, so move forward a few

years — I had switched country and industry.

SQSL, still without a name and part of a larger application framework, had very much fallen to

the bottom of my to-do list.

Still, all was not lost: When my new employer was acquired by a larger corporation, in a

spontaneous fight for survival, the language gained some new major features like database

engine vendor independence (each database engine would get its own driver in the form of

a shared library), concurrent engine access, data redirection, and User Defined Functions.

390

A few years later still, the language was finally separated from the application framework it had

begun life conjoined to, found a windows port (in fact, two) and finally gained a name, albeit

not a very imaginative one. Now SQSL is an ETL scripting environment that supports numerous

databases, user-defined functions, and a rich set of control structures:

But it was in late 2015 that, having joined Couchbase, it occurred to me that the language could

be a solid framework for ETL operations between SQL and NoSQL: N1QL fitted nicely with

SQSL's syntax and all this latter needed was a driver for Couchbase Server and a few JSON UTFs.

This article shows how to put the two to good use.

Some of my first employer's old machines have rightfully found their place at a local

history of computer science museum: https://www.flickr.com/photos/31231773@N02/

albums/72157624950108347 and https://www.flickr.com/photos/31231773@N02/

sets/72157624949903613/

Language Overview

SQSL is a client-side SQL-like scripting language geared to developing sophisticated scripts

running in a single place, or, rephrased, avoiding the ugly mess of mixing and matching

various database shells and separate scripting languages in order to accomplish otherwise

straightforward tasks.

https://www.flickr.com/photos/31231773@N02/sets/72157624950108347
https://www.flickr.com/photos/31231773@N02/sets/72157624950108347
https://www.flickr.com/photos/31231773@N02/sets/72157624949903613/
https://www.flickr.com/photos/31231773@N02/sets/72157624949903613/

391

It offers a wide range of features, sometimes borrowed from other languages, among

which you find

•	 database independence

•	 control and simple statements

•	 simple control constructs for parallel operation (Perl, Bourne, and Korn shells)

•	 statement redirection

•	 aggregates, data-driven operation (awk)

•	 formatting (x4GL, Informix SQL, Oracle UFI / *SQL Plus...)

•	 expansion facility (Bourne and Korn shells)

The aim is simple — if you know SQL and server-side scripting languages on the one hand, and

traditional scripting languages on the other, then an SQSL script should be immediately obvious

in meaning to you, even if you had never before come across 'S', 'Q', 'S' and 'L', in that particular

order.

By way of example, consider this rather contrived "hello world!" script which selects some data

using a database shell and passes it awk to transform and format it.

dbaccess <<"EOF" 2>/dev/null | awk '($1=="hello") { $1 = $1 FS "world" } ($1 !=
"") { printf "%s!\n", $1 }'
database stores_demo;
output to pipe 'cat' without headings
 select 'hello' from systables where tabid=1
EOF

The end result is

hello world!

The script has to first pipe the data to cat to remove the projection list labels and then to awk

in order to remove blank lines, conditionally alter text (append world when it sees hello), and

format it (it just appends an exclamation mark).

Compare it to this SQSL script, which does everything using one binary and within a

single statement:

./cli - <<"EOF" 2>/dev/null
database stores_demo;
select "hello" from systables where tabid=1
 aggregate when column(1)="hello" then let column(1) ||= " world"
 format full "%s!"
EOF

392

Or if you prefer a more awk like syntax:

./cli - <<"EOF" 2>/dev/null
database stores_demo;
select "hello" from systables where tabid=1
 aggregate ($1="hello") $1 ||= " world"
 format full "%s!"
EOF

The difference is even more apparent when more than one database engine is involved in the

script: say we have to take different actions depending on data coming from two sources: this

connect to "stores_demo" source ifmx;
connect to "sample" source db2cli;
select count(*) from systables connection "stores_demo" into ifx;
select count(*) from sysibm.tables connection "sample" into db2;
if (db2<ifx) then
 display db2 format full "db2 has %i tables";
else
 display ifx format full "informix has %i tables";
end if

Looks a damned sight more immediate than two database shells, the bourne shell and awk all

chipping in.

I'm sidetracking.

The point of this article is not to dissect the syntax of SQSL, so I will not be providing a detailed

feature discussion. If you are interested, you can find the whole syntax reference here.

Instead, we will be covering increasingly elaborate data movement examples, introducing the

relevant language features as we encounter them.

For now, the only point I'll make is that SQSL is implemented as a precompiler.

If the engines you are connecting to understand anything that resembles SQL, then the

SQSL parser is able to extract the relevant dialects from the actual script, pass the extracted

statements to the engines, and make sense of the rest:

http://www.sqsl.org/sqslref.htm

393

This is precisely what we are doing with N1QL in this particular article.

Migrating Rows to Documents: A Simple Strategy

In general, terms migrating a database from a relational engine to a document store entails the

following steps:

•	 scan the tables system catalog. For each table:

oo determine the primary key columns

oo describe each column (gather name and type)

oo scan the table. For each row

–– assemble the document key from the primary key column values and

the table name

–– assemble the output document from each column name, type and value

–– insert into the target bucket using the generated key and document

Let's Get Down to It

Now that we have an idea of the end result, we'll meander through a series of examples, each

demonstrating individual steps of the process, starting with…

394

Migrating a Single Table

let fromconn="stores_demo";
connect to fromconn source ifmx;
connect to "couchbase://192.168.1.104:8091" source cb;
select * from customer
 connection fromconn
 insert into default (key, value)
 values($1, $2)
 using json:key("::", columns),
 json:row2doc(displaylabels, columns);

That's all there is to it: three statements (well, OK, four, counting the convenience LET).

This example moves the contents of the 'customer' table in Informix's standard stores demo

database to Couchbase's default bucket using:

•	 concurrent connections

•	 statement redirection

•	 placeholders and

•	 UDFs

The first three statements are pretty straightforward: they just connect to an Informix database

engine on one side and a Couchbase cluster on the other.

All the action happens in the last statement. The SQSL parser splits the statement into several

parts:

•	 a SELECT statement which it prepares against the connection specified in the

connection clause (line 5)

•	 an INSERT statement (line 6), which, lacking in this example a connection clause, is

prepared against the current connection (in this case, our Couchbase cluster)

•	 data transformation logic contained in the using clause (line 8)

Once the statement is parsed, the binary then proceeds to

•	 retrieving rows from one connection using the implicitly prepared SELECT statement

•	 executing the logic in the using clause (line 8) to assemble a document key and a

document from each row examined

•	 piping the transformed data to the N1QL INSERT statement which is being executed

against the second connection

http://www.sqsl.org/sqslref.htm#clause_conn
http://www.sqsl.org/sqslref.htm#clause_conn
http://www.sqsl.org/sqslref.htm#clause_using
http://www.sqsl.org/sqslref.htm#clause_using
http://www.sqsl.org/sqslref.htm#clause_redir

395

A few points are worth expanding:

•	 In general terms, in statement redirection, data flows from one side to the other without

any need of syntactic sugar, if the output INSERT clause expects the same number of

items provided by the input SELECT clause.

•	 In this example, this is clearly not the case - the SELECT clause is providing a not-yet-

described tuple, while the INSERT clause expects a document key and a JSON document,

which we have to construct from each incoming tuple. Thus data flow has to be explicitly

defined by means of the using clause.

•	 For statement redirection to work, the input clause must be cursor based and the output

clause must have placeholders. SQSL will enforce this.

•	 The using clause transforms the incoming row values using two User Defined Functions:

json:key and json:row2doc (json is just the name of the containing library)

oo key() (line 8) in particular is a variadic function that generates a key using the first

argument as a separator, and the other arguments as values.

–– the built-in function columns (line 8) returns a hash (AKA associative

array) containing all the values for the current input row

oo row2doc() (line 9) is a variadic function that takes a list of field names and a list of

values and constructs a JSON document out of them

–– the built-in function displaylabels (line 9) returns a hash containing all the

names of the columns returned by the SELECT's projection list.

And here's the finished result: we migrated from

http://www.sqsl.org/sqslref.htm#clause_redir
http://www.sqsl.org/sqslref.htm#clause_using
http://www.sqsl.org/sqslref.htm#clause_using
http://www.sqsl.org/sqslref.htm#clause_function
http://www.sqsl.org/sqslref.htm#clause_exprlist
http://www.sqsl.org/sqslref.htm#clause_exprlist

396

to

And we even did all that without any prior knowledge of the source table schema!

We did say that we would be creating document keys from each table's primary key columns,

but if you pay close attention to the image above, clearly, we did not.

Bear with me — we'll get there!

Table Move, Take Two

let fromconn="stores_demo";
connect to fromconn source ifmx;
connect to "couchbase://192.168.1.104:8091" source cb;
let key=0;
select * from customer
 aggregate key+=1
 connection fromconn
 insert into default (key, value)
 values($1, $2)
 using key::string, json:row2doc(displaylabels, columns);

An alternative to using document keys generated from the individual columns values is to use

surrogate keys, or, keys that have no relation to the data.

397

In this case, we are using an incrementing integer value held in the key variable.

The aggregate clause (line 6) can be used to take action on each incoming row, possibly

based on some conditions (whether or not based on incoming data values).

In this case, we simply use it to increment the key variable at every incoming row, and then

using it as a document key in the using clause (line 10).

Couchbase document keys can only be strings, hence the cast on the key variable.

Migrate a Database

let fromconn="stores_demo";
connect to fromconn source ifmx;
connect to "couchbase://192.168.1.104:8091" source cb;
foreach select tabname
 from systables
 where tabid>=100 and tabtype="T"
 connection fromconn
 into tab;
 display tab;
 select * from <+get tab+>
 connection fromconn
 insert into default (key, value)
 values($1, $2)
 using json:key("::", tab, columns),
 json:row2doc("tabtype", displaylabels, tab, columns);
end foreach;

We can do one better, and move an entire database in one go.

This can be achieved by augmenting the previous example: we just scan the tables system

catalog and reuse the same strategy as before for each table found.

Enter the FOREACH loop at line 5: this prepares and executes SELECT statement against

the source engine, and for each table name retrieved (stored in the tab variable via the

storage clause at line 9) it proceeds to execute the code in the FOREACH block.

The rest of the code looks pretty much the same as the previous example, with the notable

exception of line 11: we need a mechanism to prepare the input SELECT statement using the

correct table name, and this we do by means of the expansion facility (the bit in the <+ +> block

in line 11).

This, among other things, evaluates the arguments within and injects the result in the

statement text — in this case, it places the contents of the tab variable in the text of the

prepared statement.

http://www.sqsl.org/sqslref.htm#clause_aggregate
http://www.sqsl.org/sqslref.htm#clause_using
http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#clause_storage
http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#FGWEXPREF

398

The last thing worthy of note is that now the using clause in line 15 is placing the table name in

both the document key and document. This is because the contents of multiple source tables

are being placed in the same bucket, and we need to differentiate in between document types,

in order to be able to do meaningful queries.

Here's a sample output from the previous script.

At first sight, not very interesting, but I do have a point, I promise.

Database Move, Different Strategy

let fromconn="stores_demo";
connect to fromconn source ifmx;
connect to "couchbase://192.168.1.104:8091" source cb;
prepare insst from insert into default (key, value)
 values($1, $2)
 using json:key("::", tab, columns),
 json:row2doc("tabtype", displaylabels, tab, columns);
foreach select tabname
 from systables
 where tabid>=100 and tabtype="T"
 connection fromconn
 into tab;

http://www.sqsl.org/sqslref.htm#clause_using

399

 display tab;
 select * from <+get tab+>
 connection fromconn
 execute insst;
end foreach;
free insst;

The statement redirection clause can sport prepared statements, too.

In this example, we PREPARE an INSERT statement beforehand (line 5) and just EXECUTE it

(line 18) as a target for the SELECT clause in line 16.

Clearly, at the time the INSERT is prepared, the tab variable is undefined and there even isn't a

source statement to which the displaylabels and columns built-in functions (in lines 7 and 8, in

the USING clause) could apply: as such you would rightfully expect the PREPARE statement to

fail.

Lazy evaluation to the rescue!

The insst prepared statement will actually fail if executed on its own, but execute it as part of a

redirected statement, and everything suddenly makes semantic sense: the using clause will use

the current tab value and the values current for each individual row.

Explaining why using a prepared statement for the SELECT part of the redirected statement,

although feasible, offers no advantage over the code above is left as an exercise for the reader.

Database Move, Different Source

let fromconn="sample";
let schema="DB2INST1";
connect to fromconn source db2cli;
connect to "couchbase://192.168.1.104:8091" source cb;
foreach select name
 from sysibm.systables
 where creator=? and type='T'
 using schema
 connection fromconn
 into tab;
 display tab;
 select * from <+get schema+>.<+get tab+>
 connection fromconn
 insert into default (key, value)
 values($1, $2)
 using json:key("::", tab, columns),
 json:row2doc("tabtype", displaylabels, tab, columns);
end foreach;

http://www.sqsl.org/sqslref.htm#clause_redir
http://www.sqsl.org/sqslref.htm#stmt_simple
http://www.sqsl.org/sqslref.htm#clause_using

400

The previous example moved the whole Informix's stores demo database to Couchbase.

This one does the same with DB2's sample demo database.

Note that the process is exactly the same as before - aside from connecting to a different

engine, the changes needed are a different SELECT statement (specific to the source database

engine) for the FOREACH uses to find table names and, in this case, the use of schema names

when selecting from source tables.

Note how DB2 system catalogs store column names in uppercase:

Parallel Migration

let fromconn="stores_demo";
connect to fromconn source ifmx;
let tabcount=0;
select tabname
 from systables
 where tabid>=100 and tabtype="T"
 aggregate tabcount+=1
 into tabs(tabcount);
clone tabcount into child, children(child);
 connect to fromconn source ifmx;

401

 connect to "couchbase://192.168.1.104:8091" source cb;
 select * from <+get tabs(child)+>
 connection fromconn
 insert into default (key, value)
 values($1, $2)
 using json:key("::", tabs(child), columns),
 json:row2doc("tabtype", displaylabels, tabs(child), columns);
 parent;
 display tabs(child) format full "moving %s";
 let pid2tab(children(child))=tabs(child);
end clone;
wait for children.* into p, r;
 display pid2tab(p), r format full "completed %s with code %d";
end wait;

We have seen how to migrate whole databases from different engines without knowing the

database schema, but we can do better still: we can migrate databases in parallel. The strategy

used is simple — rather than looping through the tables handling each in turn, we'll fork a child

for each table involved in the migration. This could be achieved using a FOREACH loop, as in

the earlier examples, and using the fork function to start each child, but we use a more elegant

method instead: a CLONE loop. This essentially forks the required number of children, each

executing the code inside the block, or up to the PARENT clause, if present. The PARENT clause

can be used by the forking process to take action after each child has been forked. In this case

(line 20), all it does is just print the table being moved by each child.

After all children have been forked, the parent process just waits for them to complete by

means of the WAIT loop at line 23.

Each child behaves as in each of the previous examples.

The only thing left to be explained is how each child determines which table to move: simples!

Note how we had earlier quickly built a list of tables in the tabs hash, using the SELECT

statement at line 5 (a neat trick here was to move the target variable in the storage clause at

line 9 by means of the aggregate clause — line 8 — thereby skipping a less efficient FOREACH

loop). The tabs hash is indexed via an integer key. Coincidentally, each child is identified by an

integer key stored in the child variable - so all each child has to do is to pick the table matching

its child id, via the expansion at line 14.

http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#clause_function
http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#clause_storage
http://www.sqsl.org/sqslref.htm#clause_aggregate
http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#stmt_control
http://www.sqsl.org/sqslref.htm#FGWEXPREF

402

As for the earlier examples, here's a sample output:

Remember the output from the earlier database migration example?

Here's the point that I was trying to make — I do realize we didn't really have a lot to migrate,

but even with the limited amount of work involved, parallel operations do save time!

...And for My Last Trick: Parallel Migration, Indexes and All!

let fromconn="stores_demo";
connect to fromconn source ifmx;
{ gather table list }
let tabcount=0;
select tabname, tabid
 from systables

403

 where tabid>=100 and tabtype="T"
 aggregate tabcount+=1
 into tabs(tabcount), tabids(tabcount);
{ fork children }
clone tabcount into child, children(child);
 connect to fromconn source ifmx;
 { gather table primary key column numbers }
 let primcount=0;
 select ikeyextractcolno(indexkeys, idx)
 from sysindices, sysconstraints, table (list{0, 1, 2, 3, 4, 5, 6, 7}) col-
nos(idx)
 where sysconstraints.constrtype="P"
 and sysconstraints.idxname=sysindices.idxname
 and sysconstraints.tabid=?
 and ikeyextractcolno(indexkeys, idx)>0
 using tabids(child)
 aggregate primcount+=1
 into primkeys(primcount);
 { do the data migration }
 connect to "couchbase://192.168.1.104:8091" source cb;
 select * from <+get tabs(child)+> connection fromconn
 insert into default (key, value)
 values($1, $2)
 using json:key("::", tabs(child),
 { only use primary key columns }
 columns<+ get case when primcount>0
 then ".(
 <+ separator "," get primkeys.(1 to primcount)
+>
)"
 else ""
 end case +>),
 json:row2doc("tabtype", displaylabels, tabs(child), columns);
 parent;
 display tabs(child) format full "moving %s";
 let pid2tab(children(child))=tabs(child);
end clone;
{ wait for children }
wait for children.* into p, r;
 display pid2tab(p), r format full "completed %s with code %d";
end wait;

404

{ create indexes }
connect to "couchbase://192.168.1.104:8091" source cb as "cb";
set connection fromconn;
{ loop through tables }
for tabnum in 1 to tabcount do
 {loop through indexes, getting name and columns }
 foreach select idxname, part1, part2, part3, part4, part5, part6, part7,
part8,
 part9, part10, part11, part12, part13, part14, part15, part16
 from sysindexes
 where tabid=?
 using tabids(tabnum)
 { make sure that the index name has no spaces }
 aggregate $1=replace($1, " ", "_")
 into idxname, ikeys.(1 to 16);
 display idxname, tabs(tabnum) format full "creating %s on %s";
 create index '<+get idxname+>'
 on default(<+silent multi quotes "''" separator ","
 <* get column names from catalog using column numbers *>
 select colname from syscolumns
 where tabid=<+get tabids(tabnum)+>
 and colno in (<+multi separator "," get ikeys.(1 to 16)+>)
 order by field(colno, list{<+multi separator "," get ikeys.(1 to
16)+>})+>)
 where tabtype="<+get tabs(tabnum)+>"
 connection "cb";
 end foreach;
end for

The examples that we have considered so far have a major issue - you can't join different types

of documents because the keys contained in individual documents do not match the document

keys they should be referring to (remember we were creating document keys out of the

contents of the entire document), and even if they did, we hadn't yet created the supporting

indexes.

This is where we put things right. The first thing we have to do is determining which columns

make up the primary key for each index, so that we generate the correct document keys. This is

done by the weird looking SELECT at line 18 - which populates the primkeys hash with the list of

column numbers of the primary key.

405

Having the column list, we have to extract from the column hash the relevant values.

For this, we use a combination of hash expansion and multi-value expansions.

A quick shorthand to generate a partial list of elements of a hash is with the following

dot notation

 identifier.(expression list)
This will generate an expression list with just the hash elements whose keys are in the list

following the identifier.

For instance, we can get the values of the first 16 columns with

 columns.(1 to 16)

So the trick here is to expand the prinkeys hash to a list of its elements, and then applying that

to the columns hash.

The expansion at line 38 does exactly that — generate a comma separated list of values, which

is then applied to the columns hash by the expansion at line 36, if the table in question has a

primary key.

We now move to index creation.

I could create the indexes relevant to each table in each child, however, this is not a strategy

that pays if, like me, you are working on a single node - the sole indexing service would not be

very happy being swamped with index creation requests.

For this reason, in this example, we wait for the children to finish loading and then loop through

the tables (line 58), and for each table, we loop through the indexes (line 61).

In line 68 we use an aggregate clause to make sure that the index names we fetch don't have

spaces. The indexing services doesn't like them.

After that, we just assemble a N1QL CREATE INDEX statement (line 71) with similar techniques

to what we have already seen.

An interesting point to note is that we get index field at line 72 names through an expansion

directly SELECTing a list of column names.

After the migration, we can easily port an original relational query

select customer.*, orders.*
 from customer, orders
 where customer.customer_num=orders.customer_num

http://www.sqsl.org/sqslref.htm#clause_exprlist
http://www.sqsl.org/sqslref.htm#FGWEXPREF
http://www.sqsl.org/sqslref.htm#clause_aggregate
http://www.sqsl.org/sqslref.htm#FGWEXPREF

406

to N1QL:

select customer.*, orders.*, meta(customer).id cid, meta(orders).id oid
 from default orders
 join default customer
 on keys "customer::"||to_string(orders.customer_num)
 where orders.tabtype="orders"
 and customer.tabtype="customer"
 and orders.customer_num is not missing

407

Which, just to prove the point, uses the correct index:

Conclusion

We have quickly gone through several features of a very old project of mine, geared to

migrating between two relational databases, and we have used it to migrate databases from the

relational world to Couchbase server, using N1QL.

This we have done without having any knowledge of the schema of the source database.

Having covered Extract, enough Transform to create documents out of tuples, and Load, the

next logical step is to explore more Transform, in order to move the data that we have just

loaded to a denormalized model.

For this, could I point you to Manuel Hurtado's excellent ELT with Couchbase and N1QL article.

https://dzone.com/articles/ELT-with-couchbase-and-n1ql

408

Author's note

You can find the complete stable source of the SQSL project at

http://www.sqsl.org/sqslsource.htm.

The current development tree can be found at http://github.com/marcogrecopriolo/sqsl

SQSL comes in the form of libraries, since the original project aimed to embed the runner in

larger applications.

The source shows how to put the libraries to good use with several sample applications, in

the form, not very imaginatively, of command line shells: you can choose from command line

interface to curses, to NW.js to NPAPI.

The examples above have been run using the CLI shell.

The runner connects to individual database engines using ad hoc data sources, in the form

of shared libraries.

The number of available data sources is currently fairly limited.

The current implementation relies on Informix ESQL/c for decimal, date, datetime, and interval

arithmetics. I have to write my own library.

The Couchbase data source and the JSON UTFs are alpha at best. The Couchbase data source

does not yet parse incoming JSON documents.

There isn't an OSX port yet — that's just about the only port missing.

http://www.sqsl.org/sqslsource.htm
https://github.com/marcogrecopriolo/sqsl

409409

HOW COUCHBASE WON YCSB
Author: Keshav Murthy

We chose to run YCSB and do the other performance work in Couchbase 4.5. Not because it’s

easy, but because it’s hard; because that goal served us to organize and measure our effort and

features and hold them to a high standard.

Like all the good benchmarks, YCSB is simple to support and run. Most NoSQL can run YCSB

benchmarks. The difficulty is in getting those numbers high. Just like the TPC wars in 90s, the

NoSQL market is going through its YCSB wars to prove the performance and scalability.

Cihan Biyikoglu has discussed the combination of technologies within Couchbase helping

customers scale and perform. In this article, we’ll focus on Workload-E in YCSB — How

Couchbase is architected and enhanced in Couchbase 4.5 to win this round of YCSB against

MongoDB.

Figure 1 Couchbase Architecture.

To put it simply, Couchbase is a distributed database. Each of the critical services — Data,

Query, Index — can be scaled up and scaled out. How you scale is your choice.

We used workload-A and workload-E to measure the performance. In this article, we’ll focus

on workload-E. The workload-E simulates queries for threaded conversations, where each

scan is for the posts in a given thread (assumed to be clustered by thread ID). In all, 95% of the

operations are scans and 5% of the operations are inserts to the database.

https://en.wikipedia.org/wiki/We_choose_to_go_to_the_Moon
http://www.tpc.org
https://www.cs.duke.edu/courses/fall13/cps296.4/838-CloudPapers/ycsb.pdf
https://github.com/brianfrankcooper/YCSB
https://blog.couchbase.com/digging-deeper-into-ycsb-benchmark-with-couchbase-server-4.5/
https://info.couchbase.com/2016_Benchmark_MongoDB_3_2_vs_Couchbase_Server_4_5_HP_TOP.html
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

410

The short scan operations can be written in SQL with the following query:

SELECT field0, field1, field2, field3,
 field4, field5, field6, field7,
 Field8, field9
FROM ycsb
WHERE primary_key > "xyz1028"
ORDER BY primary_key

LIMIT 50;

In Couchbase, the YCSB data is represented as the following:

DocumentKey: "user4052466453699787802"
{
"field0": "(W342\u003e?5f.Q;6S{+;t30h#Vc:_.7\u003e5!~3Q)0?h#\"r77j+H%89:%\u003c-
b\"Ss:56\"G=94\u003e(Q'!Yi57f+@k;H-%+v4J;.:4U\u00261 *1\u003c=",
"field1": "8/t:3|0,d\"@i6^+452\u0026Ly3108,|+2v?D%,2$%_5$Uc\u0026=l:Zm)Hk3*02Ak*$|
;\"-8r+2*\u003cA?#N#!84%\u0026~6X656!Ms?+';/''Cg6",
"field2": "+J;5Nc\u003e5h\"/f1+l?.v.\u003e\"-4p!Rq\u003eY53;\u003e4Pg9We*!6;]}7A)8\
u0026'\u003eWg+\\1-Nq?Wk:,\u003e$Ae3\u003c4\u003c7~+\u0026,/ d*Y!5?(=@k\
u00269|'F53D!$",
"field3": ",\u003c''-\u003e;2*1Du#A5\u003cA36/d6%:*!\u003c -*?;4!%)\\o'\"j2,28\
u003ez1Ze;Ve:Ci\"+,*'.4^+,9f+Rk7Vo/Y'5h*7n2L398p\u003c=l'+|3Ru7",
"field4": "36t?Po!5.%Jk6\"l':8=48$P5*H/4F/#'4 %0,T}'9z##j6' -\\!!2n958\u003c-
7d0%r*44\u003e(f/[a?#69]w((f.No+U)0M52+\u003c-D/*W30",
"field5": ",Fu+182 40?$?$:)2:))6$Gg Yk6',\u003e,\"5Cw%9\u0026,'p.^#%7p4Ps/Vy-
[;$Ak9!l\u003e%8\u003eI)46l/]g2Go(-\u003e= x;]!\u003c2~\"B!0Bi)\u003c.4",
"field6": "+2h;@m,)0,7n-Iw/W/79b7Y{*% 8\u00268\u003e:r'X/,#08\":7Fm72\u003c/Dw7Ja
%l',\"7I+\u003cEe?;4% v%\u0026,$- ;$\u0026,%86 ~3J7\u0026?n*O#2S?8",
"field7": ",/\u003e4 (,L}\u00263h5/j2(,1Q+1A)4$\u003e\u003c+.,;d6@;*Yi;Ou-\
u00260%?\"3Ua;\\k8P'$\"d#B7$\"*-S1(8 !Vy*Kg;^e2N);?. Ke1Eg\u003eVo\"R=(",
"field8": "52p\";:\u003eBu\u0026D/0O/ ?0='d3%\"'G+\u003c z.Gg\u003eIy!Xe?D-6$0%-
Za 1:%(01.6%F/#\u003e\u003c(6\u00265\\)8_i:(\u003c5Oo+?p7+l?Ym6\"|)\u0026\u003c\
u003c(\u003e4,,-",
"field9": "#G=($:6X%%Z14,v#6r;#l/9x04*8 h,N3-Za4Da##'')t.\u003e(-(p#C:L%=
d(S2H/\"P}/%0/1j/=h0Q1)2\u003c12(_y#P!$82(\\=!"

}

The Couchbase port for YCSB is available at: https://github.com/brianfrankcooper/YCSB/tree/

master/couchbase2

https://github.com/brianfrankcooper/YCSB/tree/master/couchbase2
https://github.com/brianfrankcooper/YCSB/tree/master/couchbase2

411

Below is the actual query in Couchbase. The meta().id expression in the query refers to the

document key of the document. In Couchbase, each document in a bucket will have a unique

key, referred to as document key.

SELECT field0, field1, field2, field3,
 field4, field5, field6, field7,
 Field8, field9xz
FROM ycsb
WHERE meta().id >= "xyz1028"
ORDER BY meta().id

LIMIT 50;

Once you load the data, you simply create the following index. You’re ready to run the YCSB

workload E.

CREATE INDEX meta_i1 ON ycsb(meta().id);

When we ran this on Couchbase 4.0, we knew we had our work cut out. In this article, we’ll walk

through the optimizations done in 4.5 to improve this query. What we’ve done for this query

applies to your index design, resource usage, and performance of your application queries.

In 4.5, when you execute this query, here is the plan used:

[
{
 "plan": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "meta_i1",
 "index_id": "bb26497ef8cf5fef",
 "keyspace": "ycsb",
 "limit": "50",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "Inclusion": 1,
 "Low": [
 "\"xyz1028\""

412

]
 }
 }
],
 "using": "gsi"
 },
 {
 "#operator": "Parallel",
 "maxParallelism": 1,
 "~child": {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "Fetch",
 "keyspace": "ycsb",
 "namespace": "default"
 },
 {
 "#operator": "Filter",
 "condition": "(\"xyz1028\" <= (meta('ycsb').'id'))"
 },
 {
 "#operator": "InitialProject",
 "result_terms": [
 {
 "expr": "('ycsb'.'field0')"
 },
 {
 "expr": "('ycsb'.'field1')"
 },
 {
 "expr": "('ycsb'.'field2')"
 },
 {
 "expr": "('ycsb'.'field3')"
 },
 {
 "expr": "('ycsb'.'field4')"
 },
 {
 "expr": "('ycsb'.'field5`)"

413

 },
 {
 "expr": "('ycsb'.'field6')"
 },
 {
 "expr": "('ycsb'.'field7')"
 },
 {
 "expr": "('ycsb'.'Field8')"
 },
 {
 "expr": "('ycsb'.'field9')"
 }
]
 }
]
 }
 }
]
 },
 {
 "#operator": "Limit",
 "expr": "50"
 },
 {
 "#operator": "FinalProject"
 }
]
 },
 "text": "SELECT field0, field1, field2, field3, \n field4, field5, field6,
field7,\n Field8, field9\nFROM ycsb\nWHERE meta().id >= \"xyz1028\" \nORDER
BY meta().id\nLIMIT 50;"
}
]

Each query goes thru multiple layers of execution within the query engine. The query engine

orchestrates query execution among multiple indexes and data services, channeling the data

through multiple operators.

 Let’s take this and explain the performance optimizations, indexing features implemented,

exploited to get the best performance

414

1. Index Scan

Here’s the explain snippet on index scan. In this case, we use the index meta_i1, with a predicate

specified by the spans and the index scan is expected to return the first 50 qualified keys. Let’s

examine each of those decisions in in subsequent sections.

 "#operator": "IndexScan",
 "index": "meta_i1",
 "index_id": "bb26497ef8cf5fef",
 "keyspace": "ycsb",
 "limit": "50",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "Inclusion": 1,
 "Low": [
 "\"xyz1028\""
]
 }
 }
],
 "using": "gsi"

 },

415

2. Index Selection

Index selection in Couchbase is based on the predicates (filters) in the WHERE clause of the

statement only. The index selection is made solely based on predicates and not any references

to any other clauses like projection, grouping, ordering, etc.

In this statement, the WHERE clause is: meta().id >= "xyz1028". In this case, the match is quite

straightforward. The index meta_i1 is chosen.

This is the very basic case. There are many subtle things about creating the right index and

improving the throughput of the index scans. Let’s discuss one by one.

In Couchbase, you can create many types of indices. We now have a secondary index meta_i1

on the document key (meta().id). In couchbase, you can create multiple indexes with same set

of keys, but with different name.

CREATE INDEX meta_i2 ON ycsb(meta().id);
CREATE INDEX meta_i3 ON ycsb(meta().id);
CREATE INDEX meta_i4 ON ycsb(meta().id);

With these indices, the plan would choose the primary index, saving memory and CPU

resources.

 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "primary_i1",
 "index_id": "23db838eab4b16ab",
 "keyspace": "ycsb",
 "limit": "50",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "Inclusion": 1,
 "Low": [
 "\"xyz1028\""
]
 }
 }
],
 "using": "gsi"

 },

https://dzone.com/articles/index-first-and-query-faster

416

3. LIMIT Pushdown

In pagination queries, it’s typical to limit the results what the screen can show. OFFSET and

LIMIT keywords in the query help you to paginate through the resultset. From the application

point of view, OFFSET and LIMIT is on the resultset of the whole query after all the select-join-

sort-project operations are done.

However, if the index scan is being used for filtering the data, data is already ordered on the

index keys. Then, if the ORDER BY is on the index keys, ascending and in the same order as the

index keys, we can exploit the index ordering to provide the results in the expected order. This

is significant, without the pushdown, we need to retrieve all of the qualified documents, sort

them and then choose the specific window of results to return.

The primary index matches the predicate in the query. The ORDER BY is ascending by default.

So, the predicate and the LIMIT is pushed down to the index scan. The plan includes the limit

field with the number pushed down as well. When you want a high performing pagination

queries, the LIMIT and OFFSET should be pushed down to the index scan.

SELECT field0, field1, field2, field3,
 field4, field5, field6, field7,
 Field8, field9xz
FROM ycsb
WHERE meta().id >= "xyz1028"
ORDER BY meta().id
LIMIT 50;

 {
 "#operator": "Sequence",
 "~children": [
 {
 "#operator": "IndexScan",
 "index": "primary_i1",
 "index_id": "23db838eab4b16ab",
 "keyspace": "ycsb",
 "limit": "50",
 "namespace": "default",
 "spans": [
 {
 "Range": {
 "Inclusion": 1,
 "Low": [
 "\"xyz1028\""
]

417

 }
 }
],
 "using": "gsi"

 },

Another thing to notice is that, because the LIMIT is pushed down to index scan, the order,

offset, limit operators become unnecessary and are removed from the plan. The best

optimizations simply avoid the work altogether. This is one of them.

If we didn’t have this optimization in place, or when the ORDER BY does not follow the index

key order, you’d see something like this in the query plan.

 {
 "#operator": "Order",
 "limit": "50",
 "offset": "2500",
 "sort_terms": [
 {
 "expr": "(meta('ycsb').'id')"
 }
]
 },
 {
 "#operator": "Offset",
 "expr": "2500"
 },
 {
 "#operator": "Limit",
 "expr": "50"
 },
 {
 "#operator": "FinalProject"
 }

]

If the query has both OFFSET and LIMIT, the sum of both are pushed down and the query

engine simply skips over the keys required by the OFFSET.

explain SELECT field0, field1, field2, field3,
 field4, field5, field6, field7,
 Field8, field9
FROM ycsb
WHERE meta().id >= "xyz1028"

418

ORDER BY meta().id
OFFSET 2500
LIMIT 50;
 "#operator": "IndexScan",
 "index": "primary_i1",
 "index_id": "23db838eab4b16ab",
 "keyspace": "ycsb",
 "limit": "(2500 + 50)",

 "namespace": "default",

4. Index Scan Range

The index scan range specified the by the spans. For this query, the range is (meta().id >=

"xyz1028") and is specified by the following.

"spans": [
 {
 "Range": {
 "Inclusion": 1,
 "Low": [
 "\"xyz1028\""
]
 }
 }
],

5. Type of the Index

In my cluster, I have the default standard global secondary index. In the plan, we can see this in

the field {"using": "gsi"}.

Couchbase 4.5 introduces memory optimized index. A memory-optimized index uses a novel

lock-free skiplist to maintain the index and keeps 100% of the index data in memory. A memory-

optimized index has better latency for index scans and can also process the mutations of the

data much faster.

When you install Couchbase cluster, you’d need to select the type indexes you want to create

in that cluster: Standard Global Secondary indexes, which uses the forestdb storage engine

underneath and Memory-Optimized Global Secondary Index which keeps the full index in

memory. More information at: http://developer.couchbase.com/documentation/server/4.5-dp/

in-memory-indexes.html

Settings

http://developer.couchbase.com/documentation/server/4.5-dp/in-memory-indexes.html
http://developer.couchbase.com/documentation/server/4.5-dp/in-memory-indexes.html
https://developer.couchbase.com/documentation/server/4.5/introduction/whats-new.html

419

Summary
The duplicate indices, push down of the LIMIT, avoiding fetching extra keys from the index,

avoiding sort — all done in a generalized way —helps optimize this YCSB scan query. This will

help general queries with your application queries as well.

https://developer.couchbase.com/documentation/server/4.5/introduction/whats-new.html

420

421

RESOURCES

1.	 Couchbase: http://www.couchbase.com

2.	 https://query.couchbase.com

3.	 Couchbase Forum: http://forums.couchbase.com

4.	 Couchbase Blogs: https://blogs.couchbase.com

5.	 N1QL Tutorial: https://query-tutorial.couchbase.com/tutorial/#1

6.	 CURL Comes to N1QL: Querying External JSON Data: https://dzone.com/articles/curl-

comes-to-n1ql-querying-external-json-data

7.	 Comparing Oracle and N1QL Support for the Date-Time Feature (Part 1): https://dzone.

com/articles/comparing-oracle-and-n1ql-support-for-the-date-tim

8.	 Dzone articles on N1QL and Couchbase: http://www.dzone.com

9.	 Concurrency Behavior: MongoDB vs. Couchbase: https://dzone.com/articles/concurrency-

behavior-mongodb-vs-couchbase

http://www.couchbase.com
https://query.couchbase.com
http://forums.couchbase.com
https://blogs.couchbase.com
https://query-tutorial.couchbase.com/tutorial/#1

https://dzone.com/articles/curl-comes-to-n1ql-querying-external-json-data
https://dzone.com/articles/curl-comes-to-n1ql-querying-external-json-data
https://dzone.com/articles/comparing-oracle-and-n1ql-support-for-the-date-tim
https://dzone.com/articles/comparing-oracle-and-n1ql-support-for-the-date-tim
http://www.dzone.com
https://dzone.com/articles/concurrency-behavior-mongodb-vs-couchbase
https://dzone.com/articles/concurrency-behavior-mongodb-vs-couchbase

422

